
1

AN INTRODUCTION TO
MCSCF

Mark S. Gordon

Iowa State University



2

ORBITAL APPROXIMATION

• Hartree product (hp) expressed as a product
of spinorbitals ψι = φiσi

•  φi = space orbital, σi = spin function (α,β)

• Pauli Principle requires antisymmetry:

Ψhp = ψ1(1)ψ2(2)…ψN(N)

Ψ =  ÂΨhp = |ψ1(1)ψ2(2)…ψN(N)|
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ORBITAL APPROXIMATION

• For more complex species (one or more open
shells) antisymmetric wavefunction is
generally expressed as a linear combination of
Slater determinants

• Optimization of the orbitals (minimization of
the energy with respect to all orbitals), based
on the Variational Principle) leads to:
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HARTREE-FOCK METHOD

• Optimization of orbitals leads to
– Fφi = εiφi

– F = Fock operator = hi + ∑i(2Ji - Ki) for closed
shells

–  φi = optimized orbital

–  εi = orbital energy



5

HARTREE-FOCK METHOD

• Closed Shells: Restricted Hartree-Fock (RHF)

  Ψ = |φ1φ 1φ2φ 2LφNφ N |

• Consider H2: Ψ =| φ1φ 1 |

• The 2-electron case can be written more simply

•  Ψ=φ1(1)φ1(2)[α(1)β(2)−α(2)β(1)](2−1/2)=ΦΣ

•  Ψ=(space function) (spin function)
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• Simplest MO for H2 is minimal basis set:

•  φ1=[2(1+S)]-1/2 (1sA + 1sB)

– 1sA, 1sB=AOs on HA, HB, respectively

• Expectation value of energy <E> is
– <E>=<Ψ|Η|Ψ>=<Φ|Η|Φ> <Σ|Σ>

– Since H is spin-free, so

– Main focus is on space part:

–  Φ=φ1(1)φ1(2)

–    =[2(1+S)]-1[1sA(1)+1sB(1)][1sA(2)+1sB(2)]
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–  Φ =[2(1+S)]-1[1sA(1)1sA(2)+1sB(1)1sB(2) +

1sA(1)1sB(2)+1SA(2)1sB(1)]

• 1st 2 terms = ionic, 2nd 2 terms = covalent
–  Φ =[2(1+S)]-1 [Φion + Φcov]

– So, HF wavefunction is equal mix of covalent &
ionic contributions

– Apparently OK ~ equilibrium geometry

– Consider behavior as R --> ∞: S--> 0

–  Φ -->1/2 [Φion + Φcov]

– <E>-->1/4<Φion+Φcov|H|Φion+Φcov>
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• The Hamiltonian is

H = H1
(0) + H2

(0) +1 / r12

H1
(0) = −(1/ 2)∇1

2 − ZA / rA1 − Z B / rB1

• Plugging in & recognizing that as R->∞, many
terms -> 0:
– <E>R->∞ -> 1/2[(EH+ + EH-) + 2EH]
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• So, the HF wavefunction gives the wrong limit
as H2 dissociates, because ionic & covalent
terms have equal weights.

• Must be OK ~ Re, since HF often gives good
geometries

• HF/MBS De~3.64 ev.  Cf., De(expt)~4.75 ev
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VALENCE BOND METHOD

• Alternative to MO, originally called Heitler-
London theory

• Presumes a priori that bonds are covalent:
–  φ1=1sA(1)1sB(2);   φ2=1sA(2)1sB(1)

–  ΨVB=[2(1+S12)]-1/2[φ1 + φ2];  S12=<φ1|φ2> = SAB
2

• Apply linear variation theory in usual way:
– Dissociation to correct limit H + H

– De~3.78 ev; cf., De(expt)~4.75 ev.
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• So, the MO wavefunction gives the wrong limit
as H2 dissociates, whereas VB gives correct
limit.

• Both MO and VB give poor De

• MO incorporates too much ionic character

• VB completely ignores ionic character

• Both are inflexible

• How can these methods be improved?
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IMPROVING VB AND MO

• Could improve VB by adding ionic terms using
variational approach:
–  ΨVB,imp=ΨVB + γΨion = Ψcov + γΨion

– where γ = variational parameter.

– Expect γ~1 ~R=Re & γ ->0 as R-> ∞

• Since MO method over-emphasizes ionic
character, want to do something similar, but in
reverse
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IMPROVING VB AND MO

• Improve MO by allowing electrons to stay
away from each other: decrease importance of
ionic terms.  Recall (ignoring normalization)
–  ΨMO=φ1(1)φ1(2):  φ1=1sA + 1sB

• Antibonding orbital
–  ΨMO

*=φ2(1)φ2(2):  φ2=1sA - 1sB

– Keeps electrons away from each other.
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• So, we write (ignoring normalization)
–  ΨMO,imp= ΨMO + λΨMO

* =φ1(1)φ1(2) + λ φ2(1)φ2(2)

– where λ = variational parameter

–  |λ|∼0 at R = Re

–      -> 1 as R-> ∞
• Can easily show that

–  ΨMO,imp= ΨVB,imp; γ = (1+λ)/(1−λ)

•  ΨMO,imp is simplest MCSCF wavefunction

– Gives smooth dissociation to H + H
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RHF VS. UHF

• Recall that
–  φ1=[2(1+S)]-1/2 (1sA + 1sB): bonding MO

–  φ2=[2(1−S)]-1/2 (1sA - 1sB): anti-bonding MO

• Ground state wavefunction is 

Ψ =| φ1φ 1 |
– Ground state space function Φ = φ1(1)φ1(2)

– RHF since α,β electrons restricted to same MO
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• Can introduce flexibility into the wavefunction
by relaxing RHF restriction.
– Define two new orbitals φ1

α,φ1
β, so that

–  ΦUHF =  φ1
α(1) φ1

β(2): Unrestricted HF/UHF,

different orbitals for different spins: DODS

• Can expand these 2 UHF orbitals in terms of 2
known linearly independent functions.  Take
these to be φ1, φ2:

–  φ1
α =φ1cosθ + φ2sinθ 0≤θ≤45˚

–  φ1
β = φ1cosθ - φ2sinθ θ=0˚: RHF solution
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• Can expand φ1
α,φ1

β in terms of 1sA, 1sB

• Then derive <E(θ)>, d<E(θ)>/dθ, d2<E(θ)>/dθ2

–  Details in Szabo & Ostlund; 2 possibilities:

0 θ

<E>

RHF solution: stable
0 θ

<E>

RHF unstable: UHF

• Corresponds to Pople RHF/UHF stablity test
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• As H-H bond in H2 is stretched,
– Optimal value of θ must become nonzero, since

– We know RHF solution is incorrect at asymptote

– As R->∞, θ-> 45˚

– Can express UHF wavefunction as

ΨUHF = cos2 Θ | φ1φ 1 | − sin2 Θ | φ2φ 2 |

− sin ΘcosΘ{| φ1φ 2 | − | φ2φ 1 |}

– Note that 1st 2 terms are just MCSCF wavefunction

– 3rd term corresponds to spin contamination
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• At θ=0˚, ΨUHF = ΨRHF =

ΨUHF = cos2 Θ | φ1φ 1 | − sin2 Θ | φ2φ 2 |

− sin ΘcosΘ{| φ1φ 2 | − | φ2φ 1 |}

| φ1φ 1 |

• At θ=45˚, ΨUHF = 1 / 2 | φ1φ 1 | −1 / 2 | φ2φ 2 | −1 /23Ψ

• So, UHF wavefunction correctly dissociates to
H + H, but wavefunction is 50-50 mixture of
singlet and triplet

• UHF therefore gives non-integer natural orbital
occupation numbers.



20

SINGLET CH2
• Consider simple Walsh diagram

ε = orbital energy

– In H2O, a1, b1 both doubly occ lone pairs: HF OK

– b1 =pure p HOMO, a1 s character-> 0 as θ-> 180˚

– At θ=180˚, (a1,b1) become degenerate π orbital

ε

θ (HCH)

b1

a1

90 180
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– In CH2, a1=HOMO, b1=LUMO

– At θ=90˚, N(a1)~2, N(b1)~0: HF OK

– At θ=180˚, (a1,b1) = degenerate π orbital, so

ε

θ (HCH)

b1

a1

90 180

Ψ = ( 2 )−1 / 2{| a1a 1 | − | b1b 1 |}

– There are 2 equally weighted configurations
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• Most general form of 1CH2 wavefunction is

Ψ = C1 | a1a 1 | +C2 | b1b 1 |

• This is a FORS or CASSCF wavefunction:
– 2 active electrons in 2 active orbitals: (2,2)

– At θ~90˚: C1~1, C2~0: NOON~2,0

– At θ=180˚: C1=C2=2-1/2: NOON~1,1
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• Now consider N2 dissociation:
– Breaking 3 bonds: σ + 2π

– Minimum correct FORS/CASSCF=(6,6)

– Used as benchmark for new methods
designed for bond-breaking

• Head-Gordon

• Piecuch
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Internuclear Separation (A)
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MCSCF

• Usually scales ~N5-6, but can be worse

• Necessary for
– Diradicals

– Unsaturated transition metals

– Excited states

– Often transition states

• CASSCF accounts for near-degeneracies

• Still need to correct for rest of electron
correlation: “dynamic correlation”
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MULTI-REFERENCE METHODS

• Multi-reference CI: MRCI
– CI from set of MCSCF configurations

– Most commonly stops at singles and doubles
• MR(SD)CI

• Very demanding

• ~ impossible to go past 14 electrons in 14 orbitals

• Multi-reference perturbation theory
– More efficient than MRCI

– Not usually as accurate as MRCI
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