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Installation overview 
  
    Very specific compiling directions are given in a file 
provided with the GAMESS distribution, namely  
         ~/gamess/machines/readme.unix 
and this should be followed closely.  The directions here 
are of a more general nature. 
 
    Before starting the installation, you should also see 
the pages about your computer in the 'Hardware Specifics' 
section of this manual, and at the compiler version notes 
that are kept in the script 'comp'.  There might be some 
special instructions for your machine. 
 
    The first step in installing GAMESS should be to print 
the manual.  If you are reading this, you've got that done!  
The second step would be to get the source code activator 
compiled and linked (note that the activator must be 
activated manually before it is compiled).  Third, you 
should now compile all the quantum chemistry sources. 
Fourth, compile the DDI message passing library, and its 
process kickoff program.  Fifth, link the GAMESS program. 
Finally, run all the short examples provided with GAMESS, 
and very carefully compare the key results shown in the 
'sample input' section against your outputs.  These 
"correct" results are from a IBM RS/6000, so there may be 
very tiny (last digit) precision differences for other 
machines.  That's it!  The rest of this section gives a 
little more detail about some of these steps. 
 
                       * * * * *  
 
    GAMESS will run on essentially any machine with a 
FORTRAN 77 compiler.  However, even given the F77 standard 
there are still a number of differences between various 
machines.  For example, some chips still use 32 bit 
integers, as primitive as that may seem, while many chips 
allow for 64 bit processing (and hence very large run-time 
memory usage).  It is also necessary to have a C compiler, 
as the message passing library is implemented entirely in 
that language. 
 
    Although there are many types of computers, there is 
only one (1) version of GAMESS. 
  
    This portability is made possible mainly by keeping 
machine dependencies to a minimum (that is, writing in 
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FORTRAN77, not vendor specific language extensions).  The 
unavoidable few statements which do depend on the hardware 
are commented out, for example, with "*I64" in columns 1-4.  
Before compiling GAMESS on a 64 bit machine, these four 
columns must be replaced by 4 blanks.  The process of 
turning on a particular machine's specialized code is 
dubbed "activation". 
  
    A semi-portable FORTRAN 77 program to activate the 
desired machine dependent lines is supplied with the GAMESS 
package as program ACTVTE.  Before compiling ACTVTE on your 
machine, use your text editor to activate the very few 
machine dependent lines in ACTVTE before compiling it. Be 
careful not to change the DATA initialization! 
 
                       * * * * * 
 
    The quantum chemistry source code of GAMESS is in the 
directory 
             ~/gamess/source 
and consists almost entirely of unactivated FORTRAN source 
code, stored as *.src.  There is a bit of C code in this 
directory to implement runtime memory allocation. 
  
    The task of building an executable for GAMESS is: 
          activate     compile        link 
      *.SRC --->  *.FOR  --->  *.OBJ  ---> *.EXE 
      source     FORTRAN       object    executable 
       code        code         code       image 
where the intermediate files *.FOR and *.OBJ are discarded 
once the executable has been linked.  It may seem odd at 
first to delete FORTRAN code, but this can always be 
reconstructed from the master source code using ACTVTE. 
  
    The advantage of maintaining only one master version is 
obvious.  Whenever any improvements are made, they are 
automatically in place for all the currently supported 
machines.  There is no need to make the same changes in a 
plethora of other versions. 
 
                       * * * * * 
 
    The Distributed Data Interface (DDI) is the message 
passing layer, supporting the parallel execution of GAMESS. 
It is stored in the directory tree 
             ~/gamess/ddi 
It is necessary to compile this software, even if you don't 
intend to run on more than one processor.  This directory 
contains a file readme.ddi with directions about compiling, 
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and customizing your computer to enable the use of System V 
memory allocation routines.  It also has information about 
some high end parallel computer systems. 
 
                       * * * * * 
 
    The control language needed to activate, compile, and 
link GAMESS on your brand of computer involves several 
scripts, namely: 
    COMP    compiles a single quantum chemistry module. 
    COMPALL compiles all quantum chemistry source modules. 
    COMPDDI compiles the distributed data interface, and 
            generates a process kickoff program, ddikick.x. 
    LKED    link-edit (links) together quantum chemistry 
            object code, and the DDI library, to produce a 
            binary executable gamess.x. 
    RUNGMS  runs a GAMESS job, in serial or parallel. 
    RUNALL  uses RUNGMS to run all the example jobs. 
There are files related to some utility programs: 
    MBLDR.*      model builder (internal to Cartesian) 
    CARTIC.*     Cartesian to internal coordinates 
    CLENMO.*     cleans up $VEC groups 
    DK3.F        prepare relativistic AO contractions. 
There are files related to two-D X-windows graphics, in: 
             ~/gamess/graphics 
Better back-end graphics (3D as well as 2D) is available in 
the MacMolPlt program, now available for all popular 
desktop operating systems. 
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Running Distributed Data Parallel GAMESS 
 
    GAMESS consists of many FORTRAN files implementing its 
quantum chemistry, and some C language files implementing 
the Distributed Data Interface (DDI).  The directions for 
compiling DDI, configuring the system parameters to permit 
execution of DDI programs, and how to use the 'ddikick.x' 
program which "kicks off" GAMESS processes may be found in 
the file readme.ddi.  If you are not the person installing 
the GAMESS software, you can skip reading that. 
 
    Efficient use of GAMESS requires an understanding of 
three critical issues:  The first is the difference between 
two types of memory (replicated MWORDS and distributed 
MEMDDI) and how these relate to the physical memory of the 
computer which you are using.  Second, you must understand 
to some extent the degree to which each type of computation 
scales so that the proper number of CPUs is selected. 
Finally, many systems run -two- GAMESS processes on every 
processor, and if you read on you will find out why this is 
so. 
 
    Since all code needed to implement the Distributed Data 
Interface (DDI) is provided with the GAMESS source code 
distribution, the program compiles and links ready for  
parallel execution on all machine types.  Of course, you 
may choose to run on only one processor, in which case 
GAMESS will behave as if it is a sequential code, and the 
full functionality of the program is available. 
 

parallelization history 
 
    We began to parallelize GAMESS in 1991 as part of the 
joint ARPA/Air Force piece of the Touchstone Delta project. 
Today, nearly all ab initio methods run in parallel,  
although some of these still have a step or two running 
sequentially only.  Only the RHF+CI gradients have no 
parallel method coded.  We have not parallelized the semi- 
empirical MOPAC runs, and probably never will.  Additional 
parallel work occurred as a result of a DoD CHSSI software 
initiative in 1996. This led to the DDI-based parallel 
RHF+MP2 gradient program, after development of the DDI 
programming toolkit itself.  Since 2002, the DoE program 
SciDAC has sponsored additional parallelization.  The DDI 
toolkit has been used since its 1999 introduction to add 
codes for UHF+MP2 gradient, ROHF+ZAPT2 energy, and MCSCF 
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wavefunctions as well as their analytic Hessians or MCQDPT2 
energy correction. 
  
    In 1991, the parallel machine of choice was the Intel 
Hypercube although small clusters of workstations could 
also be used as a parallel computer.  In order to have 
the best blend of portability and functionality, we chose 
in 1991 to use the TCGMSG message passing library rather 
than one of the early vendor's specialized libraries.  As 
the major companies began to market parallel machines, and 
as MPI version 1 emerged as a standard, we began to use 
MPI on some equipment in 1996, while still using the very 
resilient TCGMSG library on everything else.  However, in 
June 1999, we retired our old friend TCGMSG when the 
message passing library used by GAMESS changed to the 
Distributed Data Interface, or DDI.  An SMP-optimized 
version of DDI was included with GAMESS in April 2004. 
 
    Three people have been extremely influential upon the 
current parallel methodology.  Theresa Windus, a graduate 
student in the early 1990s, created the first parallel  
versions.  Graham Fletcher, a postdoc in the late 1990s, 
is responsible for the addition of distributed data 
programming concepts.  Ryan Olson rewrote the DDI software 
in 2003-4 to support the modern SMP architectures well, and 
this was released in April 2004 as our standard message 
passing implementation. 
 

DDI compute and data server processes 
 
    DDI contains the usual parallel programming calls, such 
as initialization/closure, point to point messages, and 
the collective operations global sum and broadcast.  These 
simple parts of DDI support all parallel methods developed 
in GAMESS from 1991-1999, which were based on replicated 
storage rather than distributed data.  However, DDI also 
contains additional routines to support distributed memory 
usage. 
 
    DDI attempts to exploit the entire system in a scalable 
way.  While our early work concentrated on exploiting the 
use of p processors and p disks, it required that all data 
in memory be replicated on every one of the p CPUs.  The 
use of memory also becomes scalable only if the data is 
distributed across the aggregate memory of the parallel 
machine.  The concept of distributed memory is contained in 
the Remote Memory Access portion of MPI version 2, but so 
far MPI-2 is not available from American computer vendors. 
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The original concept of distributed memory was implemented 
in the Global Array toolkit of Pacific Northwest National 
Laboratory (see http://www.emsl.pnl.gov/pub/docs/global). 
  
    Basically, the idea is to provide three subroutine 
calls to access memory on other processors (in the local or 
even remote nodes): PUT, GET, and ACCUMULATE.  These give 
access to a class of memory which is assumed to be slower 
than local memory, but faster than disk: 
 
    <--- fastest                           slowest ---> 
 registers cache(s) local_memory remote_memory disks tapes 
    <--- smallest                          biggest ---> 
 
Because DDI accesses memory on other CPUs by means of an 
explicit subroutine call, the programmer is aware that a 
message must be transmitted.  This awareness of the access 
overhead should encourage algorithms that transfer many 
data items in a single message.  Use of a subroutine call 
to reach remote memory is a recognition of the non-uniform 
memory access (NUMA) nature of parallel computers.  In 
other words, the Distributed Data Interface (DDI) is an 
explicitly message passing implementation of global shared 
memory.   
 
    In order to have one CPU pass data items to a second 
CPU when the second CPU needs them, without significant 
delay, the computing job on the first CPU must interrupt 
its computation briefly to furnish the data.  This type of 
communication is referred to as "one sided messages" or 
"active messages" since the first CPU is an unwitting 
participant in the process, which is driven entirely by the 
requirements of the second CPU. 
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    The Cray T3E has a library named SHMEM to support this 
type of one sided messages (and good hardware support for 
this too) so, on the T3E, GAMESS runs as a single process 
per CPU.  Its memory image looks like this: 
 
            node 0           node 1 
              p=0              p=1 
        ---------------   --------------- 
        |    GAMESS   |   |    GAMESS   | 
        |   quantum   |   |   quantum   | 
        |  chem code  |   |  chem code  | 
        ---------------   --------------- 
        |  DDI code   |   |  DDI code   | 
        ---------------   ---------------  input keywords: 
        |  replicated |   | replicated  |       <-- MWORDS 
        |  data       |   | data        | 
    ----------------------------------------- 
    |   |             |   |             |   |   <-- MEMDDI 
    |   |  distributed|   | distributed |   | 
    |   |  data       |   | data        |   | 
    |   |             |   |             |   | 
    |   |             |   |             |   | 
    |   |             |   |             |   | 
    |   ---------------   ---------------   | 
    ----------------------------------------- 
 
where the box drawn around the distributed data is meant to 
imply that a large data array is residing in the memory of 
all processes (in this example, half on one and half on the 
other). 
 
    Note that the input keyword MWORDS gives the amount of 
storage used to duplicate small matrices on every CPU, 
while MEMDDI gives the -total- distributed memory required 
by the job.  Thus, if you are running on p CPUs, the memory 
that is used on any given CPU is  
 
       total on any 1 CPU = MWORDS + MEMDDI/p 
 
Since MEMDDI is very large, its units are in millions of 
words.  Since good execution speed requires that you not 
exceed the physical memory belonging to your CPUs, it is 
important to understand that when MEMDDI is large, you will 
need to choose a sufficiently large number of CPUs to keep 
the memory on each reasonable. 
 
    To repeat, the DDI philosophy is to add more processors 
not just for their compute performance or extra disk space, 
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but also to aggregate a very large total memory.  Bigger 
problems will require more CPUs to obtain sufficiently 
large total memories!  We will give an example of how you 
can estimate the number of CPUs a little ways below. 
 
    If the GAMESS task running as process p=1 in the above 
example needs some values previously computed, it issues a  
call to DDI_GET.  The DDI routines in process p=1 then  
figure out where this "patch" of data actually resides in 
the big rectangular distributed storage.  Suppose this is 
on process p=0.  The DDI routines in p=1 send a message to 
p=0 to interupt its computations, after which p=0 sends a 
bulk data message to process p=1's buffer.  This buffer 
resides in part of the replicated storage of p=1, where 
computations can occur.  Note that the quantum chemistry 
layer of process p=1 was sheltered from most of the details 
regarding which CPU owned the patch of data that process 
p=1 wanted to obtain.  These details are managed by the DDI 
layer. 
 
    Note that with the exception of DDI_ACC's addition of 
new terms into a distributed array, no arithmetic is done 
directly upon the distributed data.  Instead, distributed 
data is accessed only by DDI_GET, DDI_PUT (its counterpart 
for storage of data items), and DDI_ACC (which accumulates 
new terms into the distributed data).  DDI_GET and DDI_PUT 
can be thought of as analogous to FORTRAN READ and WRITE 
statements that transfer data between disk storage and 
local memory where computations may occur. 
 
    It is the programmer's challenge to minimize the 
number of GET/PUT/ACC calls, and to design algorithms that 
maximize the chance that the patches of data are actually 
within the local CPU's portion of the distributed data. 
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    Since the SHMEM library is available only on a few 
machines, all other platforms adopt the following memory 
model, which involves –two- GAMESS processes running on 
every processor: 
 
            node 0           node 1 
              p=0              p=1 
        ---------------   --------------- 
        |    GAMESS  X|   |    GAMESS  X|        compute 
        |   quantum   |   |   quantum   |       processes 
        |  chem code  |   |  chem code  | 
        ---------------   --------------- 
        |  DDI code   |   |  DDI code   | 
        ---------------   ---------------          keyword: 
        |  replicated |   | replicated  |       <-- MWORDS 
        |  data       |   | data        | 
        ---------------   ---------------  
 
              p=2              p=3 
        ---------------   --------------- 
        |    GAMESS   |   |    GAMESS   |         data  
        |   quantum   |   |   quantum   |       servers 
        |  chem code  |   |  chem code  | 
        ---------------   --------------- 
        |  DDI code  X|   |  DDI code  X| 
        ---------------   --------------- 
    -----------------------------------------      keyword: 
    |   |             |   |             |   |   <-- MEMDDI 
    |   |  distributed|   | distributed |   | 
    |   |  data       |   | data        |   | 
    |   |             |   |             |   | 
    |   |             |   |             |   | 
    |   |             |   |             |   | 
    |   ---------------   ---------------   | 
    ----------------------------------------- 
 
The first half of the processes do quantum chemistry, and 
the X indicates that they spend most of their time 
executing some sort of chemistry.  Hence the name "compute 
process".  Soon after execution, the second half of the 
processes call a DDI service routine which consists of an 
infinite loop to deal with GET, PUT, and ACC requests until 
such time as the job ends.  The X shows that these "data 
servers" execute only DDI support code.  (This makes the 
data server's quantum chemistry routines the equivalent of 
the human appendix).  The whole problem of interupts is now 
in the hands of the operating system, as the data servers 
are distinct processes.  To follow the same example as 
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before, when the compute process p=1 needs data that turns 
out to reside on process 0, a request is sent to the data 
server p=2 to transfer information back to the compute 
process p=1.  The compute process p=0 is completely unaware 
that such a transaction has occurred. 
  
    The formula for the memory required by any single CPU 
is unchanged, if p is the total number of CPUs used, 
       total on any 1 CPU = MWORDS + MEMDDI/p. 
 
    As a technical matter, if you are running on a system 
where all processors are in the same node (the SGI Altix is 
an example), or if you are running on an IBM SP where LAPI 
assists in implementing one-sided messaging, then the data 
server processes are not started.  The memory model in the 
illustration above is correct, if you just mentally omit 
the data server processes from it.  In all cases, where the 
SHMEM library is not used, the distributed arrays are 
created by System V memory calls, shmget/shmat, and their 
associated semaphore routines.  Your system may need to be 
reconfigured to allow allocation of large shared memory 
segments, see 'readme.ddi' for more details. 
 
    The parallel CCSD and CCSD(T) programs add a third kind 
of memory to the mix: node-replicated.  This is data (e.g. 
the doubles amplitudes) that is stored only once per node.  
Thus, this is more copies of the data than once per 
parallel job (fully distributed MEMDDI) but fewer than once 
per CPU (replicated MWORDS).  A picture of the memory model 
for the CCSD(T) program can be found in the "readme.ddi" 
file, so is not duplicated here.  There is presently no 
keyword for this type of memory, but the system limit on 
the total SystemV memory does apply.  It is important to 
perform a check run when using CCSD(T) and carefully follow 
the printout of its memory requirements. 
 

memory allocations and check jobs 
 
    At present, not all runs require distributed memory. 
For example, in an SCF computation (no hessian or MP2 to 
follow) the memory needed is on the order of the square of 
the basis set size, for such quantities as the orbital 
coefficients, density, Fock, overlap matrices, and so on. 
These are simply duplicated on every CPU in the MWORDS (or 
the older keyword MEMORY in $SYSTEM) region.  In this case 
the data server processes still run, but are dormant 
because no distributed memory access is attempted. 
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    However, closed and open shell MP2 calculations, MCSCF 
wavefunctions, and their analytic hessian or MCQPDT energy 
correction do use distributed memory when run in parallel. 
Thus it is important to know how to obtain the correct 
value for MEMDDI in a check run, and how to compute how 
many CPUs are needed to do the run. 
 
    Check runs (EXETYP=CHECK) need to run quickly, and the 
fastest turn around always comes on one CPU only.  Runs 
which do not currently exploit MEMDDI distributed storage 
will formally allocate their MWORDS needs, and feel out 
their storage needs while skipping almost all of the real 
work.  Since MWORDS is replicated, the amount that is 
needed on 1 CPU remains unchanged if you later do the true 
computation on more than 1 CPU. 
 
    Check jobs which involve MEMDDI storage are a little 
bit trickier.  As noted, we want to run on only 1 CPU to 
get fast turn around.  However, MEMDDI is typically a large 
amount of memory, and this is unlikely to be  available on 
a single CPU.  The solution is that the check job will not 
actually allocate the MEMDDI storage, instead it just 
remembers what you gave as input and checks to see if this 
will be adequate.  As someone once said, MEMDDI is a "fairy 
tale number" during a check job.  So, you can input a big 
value like MEMDDI=25000 (25,000 million words is equal to 
25,000 * 1,000,000 * 8 = 200 GBytes) and run this check job 
on a computer with only 1024 MB = 1 GB of memory per 
processor.  Let us say that a closed shell MP2 check run 
for this case gives the output of 
  SCALED *PER-NODE* MEMORY REQUIREMENT 
  NODES  DISTRIBUTED/MWORDS  REPLICATED/WORDS TOTAL/MBYTES 
    1         952                7284508          7624 
The real run requires MWORDS=8 MEMDDI=960.  Note that we 
have just rounded up a bit from the 7.3 and 952 in this 
output, for safety. 
 
    Of course, the actual computation will have to run on a 
large number of such processors, because you don't have 200 
GB on your CPU, we are assuming 1024 MB (1 GB).  Let us 
continue to compute how many processors are needed.  We 
need to reserve some memory for the operating system (25 
MB, say) and for the GAMESS program and local storage (let 
us say 50 MB, for GAMESS is a big program, and the compute 
processes should be swapped into memory).  Thus our 
hypothetical 1024 MB processor has 950 MB available, 
assuming no one else is running. In units of words, this 
machine has 950/8 = 118 million words available for your 
run.  We must choose the number of processors p to satisfy 
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                 needed <= available 
      MWORDS + MEMDDI/p <= free physical memory 
              8 + 960/p <= 118 
so solving for p, we learn this example requires p >= 9 
compute processes.  The answer for roughly 8 GB of 
distributed memory on 1 GB processors was not 8, because 
the O/S, GAMESS itself, and the MWORDS requirements 
together mean less than 1 GB could be contributed to the 
distributed total.  More CPUs than 9 do not require 
changing MWORDS or MEMDDI, but will run faster than 9.  
Fewer CPUs than 9 do not have enough memory to run! 
 
    One more subtle point about CHECK runs with MEMDDI is 
that since you are running on 1 CPU only, the code does not 
know that you wish to run the parallel algorithm instead of 
the sequential algorithm.  You must force the CHECK job 
into the parallel section of the program by 
 $system parall=.true. $end 
There's no harm leaving this line in for the true runs, as 
any job with more than one compute process is parallel 
regardless of the input keyword PARALL. 
 
    The check run for MCQDPT jobs will print three times 
a line like this 
   MAXIMUM MEMDDI THAT CAN BE USED IN ... IS x MWORDS 
Typically the 2nd such step, transforming over all  
occupied and virtual canonical orbitals, will be the 
largest of the three requirements.  Its size can be 
guesstimated before running, as 
   (Nao*Nao+Nao)/2 * ((Nocc*Nocc+Nocc)/2 + Nocc*Nvirt) 
where Nocc = NMOFZC+NMODOC+NMOACT, Nvirt=NMOEXT, and 
Nao is the size of the atomic basis.  Unlike the closed 
shell MP2 program, this section still does extensive 
I/O operations even when MEMDDI is used, so it may be 
useful to consider the three input keywords DOORD0, 
PARAIO, and DELSCR when running this code. 
 
 

representative performance examples 
 
    This section describes the way in which the various 
quantum chemistry computations run in parallel, and shows 
some typical performance data.  This should give you as the 
user some idea how many CPUs can be efficiently used for 
various SCFTYP and RUNTYP jobs 
 
    The performance data you will see below were obtained 
on a 16 CPU Intel Pentium II Linux (Beowulf-type) cluster 
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costing $49,000, of which $3,000 went into the switched 
Fast Ethernet component.  512 MB/CPU means this cluster has 
an aggregate memory of 8 GB.  For more details, see 
    http://www.msg.chem.iastate.edu/GAMESS/dist.pc.shtml. 
This is a low quality network, which exposes jobs with 
higher communication requirements, by noting when the wall 
time is much longer than the CPU. 
 
                         --- 
 
    The HF wavefunctions can be evaluated in parallel using 
either conventional disk storage of the integrals, or via 
direct recomputation of the integrals.  Some experimenting 
will show which is more effective on your hardware.  As an 
example of the scaling performance of RHF, ROHF, UHF, or 
GVB jobs that involve only computation of the energy or its 
gradient, we include here a timing table from the 16 CPU PC 
cluster. The molecule is luciferin, which together with the 
enzyme luciferase is involved in firefly light production.  
The chemical formula is C11N2S2O3H8, and RHF/6-31G(d) has 
294 atomic orbitals.  There's no molecular symmetry.  The 
run is done as direct SCF, and the CPU timing data is 
 
                   p=1   p=2   p=4   p=8  p=16 
   1e- ints        1.1   0.6   0.4   0.3   0.2 
   Huckel guess     14    12    11    10    10 
   15 RHF iters   5995  2982  1493   772   407 
   properties      6.0   6.6   6.6   6.8   6.9 
   1e- gradient    9.7   4.7   2.3   1.2   0.7 
   2e- gradient   1080   541   267   134    68 
                  ----  ----  ----  ----  ---- 
   total CPU      7106  3547  1780   925   492 seconds 
   total wall     7107  3562  1815   950   522 seconds 
 
Note that direct SCF should run with the wall time very 
close to the CPU time as there is essentially no I/O and 
not that much communication (MEMDDI storage is not used by 
this kind of run).  Running the same molecule as 
DFTTYP=B3LYP yields 
 
                   p=1   p=2   p=4   p=8  p=16 
   1e- ints        1.1   0.7   0.3   0.3   0.2 
   Huckel guess     14    12    10    10     9 
   23 DFT iters  14978  7441  3681  1876   961 
   properties      6.6   6.4   6.5   7.0   6.5 
   1e- gradient    9.7   4.7   2.3   1.3   0.7 
   2e- grid grad  5232  2532  1225   595   303 
   2e- AO grad    1105   550   270   136    69 
                  ----  ----  ----  ----  ---- 
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   total CPU     21347 10547  5197  2626  1349 
   total wall    21348 10698  5368  2758  1477 
 
and finally if we run an RHF analytic hessian, using AO 
basis integrals, the result is 
 
                   p=1   p=2   p=4   p=8  p=16 
   1e- ints        1.2   0.6   0.4   0.3   0.2 
   Huckel guess     14    12    10    10    10 
   14 RHF iters   5639  2851  1419   742   390 
   properties      6.4   6.5   6.6   7.0   6.7 
   1e- grd+hss    40.9  20.9  11.9   7.7   5.8 
   2e- grd+hss   21933 10859  5296  2606  1358 
   CPHF          40433 20396 10016  5185  2749 
                 ----- ----- -----  ----  ---- 
   total CPU     68059 34146 16760  8559  4519 
   total wall    68102 34273 17430  9059  4978 
 
CPU speedups for 1->16 processors for RHF gradient, DFT 
gradient, and RHF analytic hessian are 14.4, 15.8, and 15.1 
times faster, respectively.  The wall clock times are close 
to the CPU time, indicating very little communication is 
involved.  If you are interested in an explanation of how 
the parallel SCF is implimented, see the main GAMESS paper, 
  M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, 
    M.S.Gordon, J.H.Jensen, S.Koseki, N.Matsunaga, 
K.A.Nguyen, S.J.Su, T.L.Windus, M.Dupuis, J.A.Montgomery 
         J.Comput.Chem.  14, 1347-1363(1993) 
 
                         --- 
 
    The CIS energy and gradient code is also programmed to 
have the construction of Fock-like matrices as its 
computational kernel.  Its scaling is therefore very 
similar to that just shown, for porphin C20N4H14, DH(d,p) 
basis, 430 AOs: 
                     p=1     p=2      p=4     p=8    p=16 
   setup              25      25       25      25      25 
   1e- ints          5.1     2.7      1.5     1.0     0.6 
   orb. guess         30      25       23      22      21 
   RHF iters        1647     850      452     251     152 
   RHF props          19      19       19      19      19 
   CIS energy      36320   18166     9098    4620    2398 
   CIS lagrang      6092    3094     1545     786     408 
   CPHF            20099   10183     5163    2688    1444 
   CIS density      2468    1261      632     324     170 
   CIS props          19      19       19      19      19 
   1e- grad         40.9    18.2      9.2     4.7     2.4 
   2e- grad         1644     849      423     223     122 
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                   -----   -----     ----    ----    ---- 
   total CPU       68424   34526    17420    8994    4791 
   total wall      68443   34606    17853    9258    4985 
which is a speedup of 14.3 for 1->16. 
 
                         --- 
 
    For the next type of computation, we discuss the MP2 
correction.  For closed shell RHF + MP2 and unrestricted 
UHF + MP2, the gradient program runs in parallel using 
distributed memory, MEMDDI.  In addition, the ROHF + MP2 
energy correction for OSPT=ZAPT runs in parallel using 
distributed memory, but OSPT=RMP does not use MEMDDI in 
parallel jobs.  All distributed memory parallel MP2 runs 
resemble RHF+MP2, which is therefore the only example given 
here. 
 
   The example is a benzoquinone precursor to hongconin, a 
cardioprotective natural product.  The formula is C11O4H10, 
and 6-31G(d) has 245 AOs.  There are 39 valence orbitals 
included in the MP2 treatment, and 15 core  orbitals.  
MEMDDI must be 156 million words, so the memory computation 
that was used above tells us that our 512 MB/CPU PC cluster 
must have at least three processors to aggregate the 
required MEMDDI.  MOREAD was used to provide converged RHF 
orbitals, so only 3 RHF iterations are performed.  The 
timing data are CPU and wall times (seconds) in the 1st/2nd 
lines: 
 
                p=3      p=4      p=12     p=16 
  RHF iters     241      181        65       51 
                243      184        69       55 
  MP2 step    5,953    4,399     1,438    1,098 
              7,366    5,669     2,239    1,700 
  2e- grad    1,429    1,135       375      280 
              1,492    1,183       413      305 
              -----    -----       ---      --- 
  total CPU   7,637    5,727     1,890    1,440 
  total wall  9,116    7,053     2,658    2,077 
 
                       3-->12  4-->16 
       CPU speedup      4.04    3.98 
       wall speedup     3.43    3.40 
 
The wall clock time will be closer to the CPU time if the 
quality of the network between the computer is improved 
(remember, this run used just switched Fast Ethernet).  As 
noted, the number of CPUs is more influenced by a need to 
aggregate the necessary total MEMDDI, more than by concerns 
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about scalability.  MEMDDI is typically large for MP2 
parallel runs, as it is proportional to the number of 
occupied orbitals squared times the number of AOs squared. 
 
    For more details on the distributed data parallel MP2 
program, see 
  G.D.Fletcher, A.P.Rendell, P.Sherwood 
      Mol.Phys. 91, 431-438(1997) 
  G.D.Fletcher, M.W.Schmidt, M.S.Gordon 
      Adv.Chem.Phys. 110, 267-294 (1999) 
  G.D.Fletcher, M.W.Schmidt, B.M.Bode, M.S.Gordon 
      Comput.Phys.Commun.  128, 190-200 (2000) 
 
                         --- 
 
    The next type of computation we will consider is 
analytic computation of the nuclear Hessian (force constant 
matrix).  The performance of the RHF program, based on AO 
integrals, was given above, as its computational kernel 
(Fock-like builds) scales just as the SCF itself.  However, 
for high spin ROHF, low spin open shell SCF and TCSCF (both 
done with GVB), the only option is MO basis integrals.  The 
integral transformation is parallel according to 
    T.L.Windus, M.W.Schmidt, M.S.Gordon 
       Theoret.Chim.Acta  89, 77-88(1994). 
It distributes 'passes' over processors, so as to 
parallelize the transformation's CPU time but not the 
replicated memory, or the AO integral time.  Finally the 
response equation step is hardly parallel at all.  The test 
example is an intermediate in the ring opening of 
silacyclobutane, GVB-PP(1) or TCSCF, 180 AOs for 6-
311G(2d,2p): 
                     p=1    p=2     p=4    p=8   p=16 
   2e- ints           83     42      21     11      5 
   GVB iters         648    333     179    104     67 
   replicate 2e-     n/a     81      81     81     82 
   transf.           476    254     123     67     51 
   1e- grd+hss         7      4       2      2      1 
   2e- grd+hss      4695   2295    1165    596    313 
   CP-TCSCF          344    339     331    312    325 
                    ----   ----    ----   ----   ---- 
   total CPU        6256   3351    1904   1189    848 
   total wall       6532   3538    2072   1399   1108 
 
Clearly, the final response equation (CPHF) step is a 
sequential bottleneck, as is the fact that the orbital 
hessian in this step is stored entirely on the disk space  
of CPU 0.  Since the integral transformation is run in 
replicated MWORDS memory, rather than distributing this, 
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and since it also needs a duplicated AO integral file be 
stored on every CPU, the code is clearly not scalable to 
very many processors.  Typically we would not request more 
than 3 or 4 processors for an analytic ROHF or GVB hessian. 
 
   The final analytic hessian type is for MCSCF.  The 
scalability of the MCSCF wavefunction will be given just 
below, but the response equation step for MCSCF is clearly 
quite scalable.  The integral transformation for the 
response equation step uses distributed memory MEMDDI, and 
should scale like the MP2 program (documented above).  The 
test case has 8e- in 8 orbitals, and the time reflect this, 
with most of the work involving the 4900 determinants.  
Total speedup for 4->16 is 4.11, due to luckier work 
distributing for 16 CPUs: 
 
                      p=4      p=16 
   MCSCF wfn        113.5     106.1 
   DDI transf.       68.4      19.3 
   1e- grd+hss        1.5       0.6 
   2e- grd+hss     2024.9     509.8 
   CPMCHF RHS       878.8     225.8   (RHS=right hand 
sides) 
   CPMCHF iters  115343.5   27885.9 
                 --------  -------- 
   total CPU     118430.8   28747.6 
   total wall    119766.0   30746.4 
 
This code can clearly benefit from using many processors, 
with scalability of the MCSCF step itself almost moot. 
 
                         --- 
 
   Now lets turn to MCSCF energy/gradient runs.  We will 
illustrate two convergers, SOSCF and then FULLNR.  The 
former uses a 'pass' type of integral transformation (ala 
the GVB hessian job above), and runs in replicated memory 
only (no MEMDDI).  The FULLNR converger is based on the MP2 
program's distributed memory integral transformation, so it 
uses MEMDDI.  In addition, the parallel implementation of 
the FULLNR step never forms the orbital hessian explicitly, 
doing Davidson style iterations to predict the new 
orbitals.  Thus the memory demand is almost entirely 
MEMDDI. 
 
   The example we choose is at a transition state for the 
water molecule assisted proton transfer in the first 
excited stat of 7-azaindole.  The formula is C7N2H6(H2O), 
there are 190 active orbitals, and the active space is the 
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10 pi electrons in 9 pi orbitals of the azaindole portion.  
There are 15,876 determinants used in the MCSCF 
calculation, and 5,292 CSFs in the perturbation calculation 
to follow.  See Figure 6 of G.M.Chaban, M.S.Gordon  
J.Phys.Chem.A 103, 185-189(1999) if you are interested in 
this chemistry.  The timing data for the SOSCF converger 
are 
 
                    p=1     p=2      p=4     p=8    p=16 
   dup. 2e- ints  327.6   331.3    326.4   325.8   326.5 
   transform.     285.1   153.6     88.4    57.8    47.3 
   det CI          39.3    39.4     38.9    38.3    38.1 
   2e- dens.        0.4     0.5      0.5     0.5     0.5 
   orb. update     39.2    25.9     17.4    12.8    11.0 
   iters 2-16    5340.0  3153.5   2043.7  1513.6  1308.5 
   1e- grad         5.3     2.3      1.3     0.7     0.4 
   2e- grad       695.6   354.9    179.4    93.2    50.9 
                 ------  ------   ------  ------  ------ 
   total CPU      6,743   4,071    2,705   2,052   1,793 
   total wall    13,761   8,289    4,986   3,429   3,899 
 
whereas the FULLNR convergers runs like this 
 
                    p=1     p=2      p=4     p=8    p=16 
   2e- DDI trans.  2547    1385      698     354     173 
   det. CI           39      39       38      38      38 
   DM2              0.5     0.5      0.5     0.5     0.5 
   FULLNR           660     376      194     101      51 
   iters 2-9      24324   13440     6942    3669    1940 
   1e- grad         5.3     2.3      1.2     0.7     0.4 
   2e- grad         700     352      181      95      51 
                 ------  ------     ----    ----    ---- 
   total CPU     28,  15,605    8,066   4,268   2,265 
   total wall    28,290  20,719   12,866   8,292   5,583 
 
The first iteration is broken down into its primary steps 
from the integral transformation to the orbital update, 
inclusive.  The SOSCF program is clearly faster, and should 
be used when the number of processors is modest (say up to 
8), however the largest molecules will benefit from using 
more processors and the much more scalable FULLNR program. 
 
   One should note that the CI calculation was more or less 
serial here.  This data comes from before the ALDET and 
ORMAS codes were given a replicated memory parallization, 
so scaling in the CI step should now be OK, to say 8 or 16 
CPUs.  However, these two CI code's use of replicated 
memory in the CI step limits MCSCF scalability in the large 
active space limit. 
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   Now let's consider the second order pertubation 
correction for this example.  As noted, it is an excited 
state, so the test corrects two states simultaneously (S0 
and S1).  The parallel multireference perturbation program 
is described in  
  H.Umeda, S.Koseki, U.Nagashima, M.W.Schmidt 
      J.Comput.Chem. 22, 1243-1251 (2001) 
The run is given the converged S1 orbitals, so that it can 
skip directly to the perturbation calculation: 
                 p=1     p=2      p=4     p=8    p=16 
   2e- ints      332     332      329     328     331 
   MCQDPT      87921   43864    22008   11082    5697 
               -----   -----    -----   -----   ----- 
   total CPU   88261   44205    22345   11418    6028 
   total wall  91508   45818    23556   12350    6852 
This corresponds to a speedup for 1->16 of 14.6. 
 
                         --- 
 
    In summary, most ab initio computations will run in 
less time on more than one processor.  However, some things 
can be run only on 1 CPU, namely 
   semi-empirical runs 
   RHF+CI gradient 
   Coupled-Cluster calculations 
Some steps run with little or no speedup, forming 
sequential bottlenecks that limit scalability.  They do not 
prevent jobs from running in parallel, but restrict the 
total number of processors that can be effectively used: 
   ROHF/GVB hessians: solution of response equations 
   MCSCF: Hamiltonian and 2e- density matrix (CI) 
   energy localizations: the orbital localization step 
   transition moments/spin-orbit: the final property step 
   MCQDPT reference weight option 
Future versions of GAMESS will address these bottlenecks.   
 
   A short summary of the useful number of CPUs (based on 
data like the above) would be 
    RHF, ROHF, UHF, GVB energy/gradient, their 
        DFT analogs, and CIS excited states      16-32+ 
    MCSCF energy/gradient 
        SOSCF                                     4-8 
        FULLNR                                    8-32+ 
    analytic hessians  
        RHF                                      16-32+ 
        ROHF/GVB                                  4-8 
        MCSCF                                    64-128+ 
    MPLEVL=2 
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        RHF, UHF, ROHF OSPT=ZAPT                  8-256+ 
        ROHF OSPT=RMP energy                      8 
        MCSCF                                    16+ 
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Altering program limits 
 
    Almost all arrays in GAMESS are allocated dynamically, 
but some variables must be held in common as their use is 
ubiquitous.  An example would be the common block /NSHEL/ 
which holds the ab initio atom's basis set.  The following 
Unix script, which we call 'mung' (see Wikipedia entry for 
recursive acronyms), changes the PARAMETER statements that 
set various limitations: 
 
#!/bin/csh 
# 
#       automatically change GAMESS' built-in dimensions 
# 
chdir /u1/mike/gamess/source 
# 
foreach FILE (*.src) 
   set FILE=$FILE:r 
   echo ===== redimensioning in $FILE ===== 
   echo "C dd-mmm-yy - SELECT NEW DIMENSIONS" \ 
             > $FILE.munged 
   sed -e "/MXATM=2000/s//MXATM=500/" \ 
       -e "/MXAO=8192/s//MXAO=2047/" \ 
       -e "/MXGSH=30/s//MXGSH=30/" \ 
       -e "/MXSH=5000/s//MXSH=1000/" \ 
       -e "/MXGTOT=20000/s//MXGTOT=5000/" \ 
       -e "/MXRT=100/s//MXRT=100/" \ 
       -e "/MXFRG=1050/s//MXFRG=65/" \ 
       -e "/MXDFG=5/s//MXDFG=1/" \ 
       -e "/MXPT=2000/s//MXPT=100/" \ 
       -e "/MXFGPT=12000/s//MXFGPT=2000/" \ 
       -e "/MXSP=500/s//MXSP=100/" \ 
       -e "/MXTS=20000/s//MXTS=2500/" \ 
       -e "/MXABC=6000/s//MXABC=1/" \ 
       $FILE.src >> $FILE.munged 
   mv $FILE.munged $FILE.src 
end 
exit 
 
    The script shows how to reduce memory, by decreasing 
the number of atoms and basis functions, and reducing the 
storage for the effective fragment and PCM solvent models. 
 
    Of course, the 'mung' script can also be used to 
increase the dimensions! 
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    To fully turn off effective fragment storage, use 
MXFRG=4, MXDFG=1, MXPT=8, MXFGPT=4.  To fully turn off PCM 
storage, use MXSP=1, MXTS=1.  The parameters currently used 
for GAMESS imply about 75 MBytes of storage tied up in 
common blocks, which is not unreasonable, even in a laptop.  
Reducing the storage size makes sense mainly on microkernel 
type systems, without virtual memory managers. 
 
In this script, 
   MXATM = max number of ab initio atoms 
   MXAO  = max number of basis functions 
   MXGSH = max number of Gaussians per shell 
   MXSH  = max number of symmetry unique shells 
   MXGTOT= max number of symmetry unique Gaussians 
 
   MXRT  = max number of MCSCF/CI states 
 
   MXFRG = max number of effective fragment potentials 
   MXDFG = max number of different effective fragments 
   MXPT  = max number of points in any one term of any EFP 
   MXFGPT= maximum storage for all EFPs, and is sized for 
           a large number of EFPs with a small number of 
           points (solvent applications), or a smaller 
           number of EFPs with many points (biochemistry). 
 
   MXSP  = max number of spheres (sfera) in PCM 
   MXTS  = max number of tesserae in PCM 
 
   MXABC = max number of A,B,C matrices in the COSMO 
           algorithm.  The default value of 6000 allows 
           the construction of cavities for roughly 150 
           to 200 atoms. 
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Names of source code modules 
  
     The source code for GAMESS is divided into a number of 
sections, called modules, each of which does related 
things, and is a handy size to edit.  The following is a 
list of the different modules, what they do, and notes on 
their machine dependencies. 
  
                                              machine 
module   description                         dependency 
-------  -------------------------           ---------- 
ALDECI   Ames Lab determinant full CI code       1 
ALGNCI   Ames Lab determinant general CI code 
BASCCN   Dunning cc-pVxZ basis sets 
BASECP   SBKJC and HW valence basis sets 
BASEXT   DH, MC, 6-311G extended basis sets 
BASG3L   G3Large basis sets 
BASHUZ   Huzinaga MINI/MIDI basis sets to Xe 
BASHZ2   Huzinaga MINI/MIDI basis sets Cs-Rn 
BASKAR   Karlsruhe (Ahlrichs) TZV basis sets 
BASN21   N-21G basis sets 
BASN31   N-31G basis sets 
BASPCN   Jensen polarization consistent basis sets 
BASSTO   STO-NG basis sets 
BLAS     level 1 basic linear algebra subprograms 
CCAUX    auxiliary routines for CC calculations 
CCDDI    parallel CCSD(T) program 
CCQAUX   auxiliaries for CCSD(TQ) program 
CCQUAD   renormalized CCSD(TQ) corrections 
CCSDT    renormalized CCSD(T) program            1 
CEEIS    corr. energy extrap. by intrinsic scaling 
CEPA     SR and MR-CEPA,AQCC,CPF calculations 
CHGPEN   screening for charge penetration of EFPs 
CISGRD   CI singles and its gradient             1 
COSMO    conductor-like screening model 
COSPRT   printing routine for COSMO 
CPHF     coupled perturbed Hartree-Fock          1 
CPMCHF   multiconfigurational CPHF               1 
CPROHF   open shell/TCSCF CPHF                   1 
DCCC     divide and conquer coupled cluster 
DCGRD    divide and conquer gradients 
DCGUES   divide and conquer orbital guess 
DCINT2   divide and conquer AO integrals         1 
DCLIB    divide and conquer library routines 
DCMP2    divide and conquer MP2                  1 
DCSCF    divide and conquer SCF 
DCTRAN   divide and conquer integral transf.     1 



Programmer's Reference  5-25 

DDILIB   message passing library interface code 
DELOCL   delocalized coordinates 
DEMRPT   determinant-based MCQDPT 
DFT      grid-free DFT drivers                   1 
DFTAUX   grid-free DFT auxiliary basis integrals 
DFTDIS   empirical dispersion correction to DFT 
DFTFUN   grid-free DFT functionals 
DFTGRD   grid DFT implementation 
DFTINT   grid-free DFT integrals                 1 
DFTXCA   grid DFT functionals, hand coded 
DFTXCB   grid DFT functionals, from repository 
DFTXCC   grid DFT functionals for meta-GGA 
DFTXCD   grid DFT functionals B97, etc 
DFTXCE   grid DFT functionals for PKZB/TPSS family 
DFTXCF   grid DFT functionals for CAMB3LYPdir  
DFTXCG   grid DFT functional for revTPSS 
DGEEV    general matrix eigenvalue problem 
DGESVD   single value decomposition 
DIAB     MCSCF state diabatization 
DMULTI   Amos' distributed multipole analysis 
DRC      dynamic reaction coordinate 
EAIPCC   EA-EOM and IP-EOM method 
ECP      pseudopotential integrals 
ECPDER   pseudopotential derivative integrals 
ECPLIB   initialization code for ECP 
ECPPOT   HW and SBKJC internally stored potentials 
EFCHTR   fragment charge transfer 
EFDRVR   fragment only calculation drivers 
EFELEC   fragment-fragment interactions 
EFGRD2   2e- integrals for EFP numerical hessian 
EFGRDA   ab initio/fragment gradient integrals 
EFGRDB   "    "       "        "        " 
EFGRDC   "    "       "        "        " 
EFINP    effective fragment potential input 
EFINTA   ab initio/fragment integrals 
EFINTB   "    "       "        " 
EFMO     EFP + FMO interfacing 
EFPAUL   effective fragment Pauli repulsion 
EFPCM    EFP/PCM interfacing 
EFPCOV   EFP style QM/MM boundary code 
EFPFMO   FMO and EFP interface 
EFTEI    QM/EFP 2e- integrals                    1 
EIGEN    Givens-Householder, Jacobi diagonalization 
ELGLIB   elongation method utility routines 
ELGLOC   elongation method orbital localization 
ELGSCF   elongation method Hartree-Fock          1 
EOMCC    equation of motion excited state CCSD 
EWALD    Ewald summations for EFP model 
EXCORR   interface to MPQC’s R12 programs 
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FFIELD   finite field polarizabilitie 
FMO      n-mer drivers for Fragment Molecular Orbital 
FMOESD   elestrostatic potential derivatives for FMO 
FMOGRD   gradient routines for FMO 
FMOINT   integrals for FMO 
FMOIO    input/output and printing for FMO 
FMOLIB   utilities for FMO 
FMOPBC   periodic boundary conditions for FMO 
FMOPRP   properties for FMO 
FRFMT    free format input scanner 
FSODCI   determinant based second order CI 
G3       G3(MP2,CCSD(T)) thermochemistry 
GAMESS   main program, important driver routines 
GLOBOP   Monte Carlo fragment global optimizer 
GMCPT    general MCQDPT multireference PT code   1 
GRADEX   traces gradient extremals 
GRD1     one electron gradient integrals 
GRD2A    two electron gradient integrals         1 
GRD2B    specialized sp gradient integrals 
GRD2C    general spdfg gradient integrals 
GUESS    initial orbital guess 
GUGDGA   Davidson CI diagonalization             1 
GUGDGB       "    "        "                     1 
GUGDM    1 particle density matrix 
GUGDM2   2 particle density matrix               1 
GUGDRT   distinct row table generation 
GUGEM    GUGA method energy matrix formation     1 
GUGSRT   sort transformed integrals              1 
GVB      generalized valence bond HF-SCF         1 
HESS     hessian computation drivers 
HSS1A    one electron hessian integrals 
HSS1B     "     "        "        " 
HSS2A    two electron hessian integrals          1 
HSS2B     "     "        "        " 
INPUTA   read geometry, basis, symmetry, etc. 
INPUTB    "     "        "       " 
INPUTC    "     "        "       " 
INT1     one electron integrals 
INT2A    two electron integrals (Rys)            1 
INT2B    two electron integrals (s,p,L rot.axis) 
INT2C    ERIC TEI code, and its s,p routines    11 
INT2D    ERIC special code for d TEI 
INT2F    ERIC special code for f TEI 
INT2G    ERIC special code for g TEI 
INT2R    s,p,d,L rotated axis integral package 
INT2S    s,p,d,L quadrature code 
INT2T    s,p,d,L quadrature code 
INT2U    s,p,d,L quadrature code 
INT2V    s,p,d,L quadrature code 
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INT2W    s,p,d,L quadrature code 
INT2X    s,p,d,L quadrature code 
IOLIB    input/output routines,etc.              2 
IVOCAS   improved virtual orbital CAS energy     1 
LAGRAN   CI Lagrangian matrix                    1 
LOCAL    various localization methods            1 
LOCCD    LCD SCF localization analysis 
LOCPOL   LCD SCF polarizability analysis         1 
LOCSVD   singular value decomposition localization 
LRD      local response dispersion correction 
LUT      local unitary transformation IOTC 
MCCAS    FOCAS/SOSCF MCSCF calculation           1 
MCJAC    JACOBI MCSCF calculation 
MCPGRD   model core potential nuclear gradient 
MCPINP   model core potential input 
MCPINT   model core potential integrals 
MCPL10   model core potential library 
MCPL20     "     "      "        " 
MCPL30     "     "      "        " 
MCPL40     "     "      "        " 
MCPL50     "     "      "        " 
MCPL60     "     "      "        " 
MCPL70     "     "      "        " 
MCPL80     "     "      "        " 
MCQDPT   multireference perturbation theory      1 
MCQDWT   weights for MR-perturbation theory 
MCQUD    QUAD MCSCF calculation                  1 
MCSCF    FULLNR MCSCF calculation                1 
MCTWO    two electron terms for FULLNR MCSCF     1 
MDEFP    molecular dynamics using EFP particles 
MEXING   minimum energy crossing point search 
MLTFMO   multiscale solvation in FMO 
MM23     MMCC(2,3) corrections to EOMCCSD 
MOROKM   Morokuma energy decomposition           1 
MNSOL    U.Minnesota solution models 
MP2      2nd order Moller-Plesset                1 
MP2DDI   distributed data parallel MP2 
MP2GRD   CPHF and density for MP2 gradients      1 
MP2GR2   disk based MP2 gradient program 
MP2IMS   disk based MP2 energy program 
MPCDAT   MOPAC parameterization 
MPCGRD   MOPAC gradient 
MPCINT   MOPAC integrals 
MPCMOL   MOPAC molecule setup 
MPCMSC   miscellaneous MOPAC routines 
MTHLIB   printout, matrix math utilities 
NAMEIO   namelist I/O simulator 
NEOSTB   dummy routines for NEO program 
NMR      nuclear magnetic resonance shifts       1 
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ORDINT   sort atomic integrals                   1 
ORMAS1   occ. restricted multiple act. space CI 
PARLEY   communicate to other programs 
PCM      Polarizable Continuum Model setup 
PCMCAV   PCM cavity creation 
PCMCV2   PCM cavity for gradients 
PCMDER   PCM gradients 
PCMDIS   PCM dispersion energy 
PCMIEF   PCM integral equation formalism 
PCMPOL   PCM polarizabilities 
PCMVCH   PCM repulsion and escaped charge 
PRMAMM   atomic multipole moment expansion 
PRPEL    electrostatic properties 
PRPLIB   miscellaneous properties 
PRPPOP   population properties 
QEIGEN   128 bit precision RI for relativity    11 
QFMM     quantum fast multipole method 
QMFM     additional QFMM code 
QMMM     dummy routines for Tinker/SIMOMM program 
QREL     relativistic transformations 
QUANPO   Quantum Chem Polarizable force field 
RAMAN    Raman intensity 
RHFUHF   RHF, UHF, and ROHF HF-SCF               1 
ROHFCC   open shell CC computations              1 
RXNCRD   intrinsic reaction coordinate 
RYSPOL   roots for Rys polynomials 
SCFLIB   HF-SCF utility routines, DIIS code 
SCFMI    molecular interaction SCF code 
SCRF     self consistent reaction field 
SOBRT    full Breit-Pauli spin-orbit compling 
SOFFAC   spin-orbit matrix element form factors 
SOLIB    spin-orbit library routines 
SOZEFF   1e- spin-orbit coupling terms 
STATPT   geometry and transition state finder 
SURF     PES scanning 
SVPCHG   surface volume polarization (SS(V)PE) 
SVPINP   input/output routines for SS(V)PE 
SVPLEB   Lebedev grids for SS(V)PE integration 
SYMORB   orbital symmetry assignment 
SYMSLC      "        "         " 
TDDEFP   EFP solvent effects on TD-DFT 
TDDFT    time-dependent DFT excitations 
TDDFUN   functionals for TD-DFT 
TDDFXC   exchange-corr. grid pts. for TD-DFT 
TDDGRD   gradient code for TD-DFT 
TDDINT   integral terms for TD-DFT               1 
TDDNLR   non-linear (two photon) TD-DFT 
TDDXCA   TD-DFT functional derivatives 
TDDXCC   TD-DFT functional derivatives 
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TDDXCD   TD-DFT functional der. for metaGGA 
TDHF     time-dependent Hartree-Fock polarzblity 1 
TDX      extended time-dependent RHF 
TDXIO    input/output for extended TDHF 
TDXITR   iterative procedures in extended TDHF 
TDXNI    non-iterative tasks in extended TDHF 
TDXPRP   properties from extended TDHF 
TRANS    partial integral transformation         1 
TRFDM2   two particle density backtransform      1 
TRNSTN   CI transition moments 
TRUDGE   nongradient optimization 
UMPDDI   distributed data parallel MP2 
UNPORT   unportable, nasty code            3,4,5,6,7,8 
UTDDFT   unrestricted TD-DFT                     1 
VBDUM    dummy routines for VB programs 
VECTOR   vectorized version routines            10 
VIBANL   normal coordinate analysis 
VSCF     anharmonic frequencies 
VVOS     valence virtual orbitals 
ZAPDDI   distrib. data ZAPT2 open shell PT gradient 
ZHEEV    complex matrix diagonalization 
ZMATRX   internal coordinates 
 
 
UNIX versions use the C code ZUNIX.C for dynamic memory. 
 
    The machine dependencies noted above are: 
1) packing/unpacking           2) OPEN/CLOSE statments 
3) machine specification       4) fix total dynamic memory 
5) subroutine walkback         6) error handling calls 
7) timing calls                8) LOGAND function 
10) vector library calls      11) REAL*16 data type 
 
 
Note that the message passing support (DDI) for GAMESS is 
implemented in C (for most machines), and is stored in a 
separate subdirectory.  Please see the ~/games/ddi tree for 
more information about the Distributed Data Interface's 
code and usage. 
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Programming Conventions 
  
         The following "rules" should be adhered 
         to in making changes in GAMESS.  These 
         rules are important in maintaining 
         portability, and should be adhered to. 
 
    The following rule is so important that it is not given 
a number, 
 
    The Golden Rule: make sure your code not only has no 
compiler diagnostics (try as many compilers as possible), 
but that it also has no FTNCHEK diagnostics.  The FTNCHEK 
program of Robert Moniot is a fantastic debugging tool, and 
results in the great portability of GAMESS.  You can learn 
how to get FTNCHEK, and how to use it from the script 
            ~/gamess/tools/checkgms 
  
    Rule 1.  If there is a way to do it that works on all 
computers, do it that way.  Commenting out statements for 
the different types of computers should be your last 
resort.  If it is necessary to add lines specific to your 
computer, PUT IN CODE FOR ALL OTHER SUPPORTED MACHINES. 
Even if you don't have access to all the types of supported 
hardware, you can look at the other machine specific 
examples found in GAMESS, or ask for help from someone who 
does understand the various machines.  If a module does not 
already contain some machine specific statements (see the 
above list) be especially reluctant to introduce 
dependencies. 
  
    Rule 2.  Write a double precision program, and let the 
source activator handle any conversion to single precision, 
when that is necessary: 
  a) Use IMPLICIT DOUBLE PRECISION(A-H,O-Z) specification 
statements throughout.  Not REAL*8.  Integer type should be 
just INTEGER, so that compiler flags can select 64 or 32 
bit integers at compile time. 
  b) All floating point constants should be entered as if 
they were in double precision, in a format that the souce 
code activator can recognize as being uniquely a number.  
Namely, the constants should contain a decimal point, a 
number after the decimal, and a signed, two digit exponent.  
A legal constant is 1.234D-02.  Illegal examples are 1D+00, 
5.0E+00, 3.0D-2.  Check for illegals by 
         grep "[0-9][DE][0-9]" *.src 
         grep "[0-9][.]D" *.src 
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         grep "[0-9][.][0-9][DE][0-9]" *.src 
         grep "[0-9][DE][+-][1-9][^0-9]" *.src 
  c) Double precision BLAS names are used throughout, for 
example DDOT instead of SDOT, and DGEMM instead of SGEMM. 
 
         The source code activator ACTVTE will 
         automatically convert these double 
         precision constructs into the correct 
         single precision expressions for machines 
         that have 64 rather than 32 bit words. 
 
    Rule 3.  FORTRAN 77 allows for generic functions.  Thus 
the routine SQRT should be used in place of DSQRT, as this 
will automatically be given the correct precision by the 
compilers.  Use ABS, COS, INT, etc.  Your compiler manual 
will tell you all the generic names. 
 
    Rule 4.  Every routine in GAMESS begins with a card 
containing the name of the module and the routine.  An 
example is "C*MODULE xxxxxx  *DECK yyyyyy".  The second 
star is in column 18.  Here, xxxxxx is the name of the 
module, and yyyyyy is the name of the routine.  This rule 
is designed to make it easier for a person completely 
unfamiliar with GAMESS to find routines. 
 
    Rule 5.  Whenever a change is made to a module, this 
should be recorded at the top of the module.  The 
information required is the date, initials of the person 
making the change, and a terse summary of the change. 
 
    Rule 6.  No imbedded tabs, statements must lie between 
columns 7 and 72, etc.  In other words, old style syntax. 
 
                       * * * 
 
         The next few "rules" are not adhered to 
         in all sections of GAMESS.  Nonetheless 
         they should be followed as much as 
         possible, whether you are writing new 
         code, or modifying an old section. 
 
    Rule 7.  Stick to the FORTRAN naming convention for 
integer (I-N) and floating point variables (A-H,O-Z).  If 
you've ever worked with a program that didn't obey this, 
you'll understand why. 
  
    Rule 8.  Always use a dynamic memory allocation routine 
that calls the real routine.  A good name for the memory 



Programmer's Reference  5-32 

routine is to replace the last letter of the real routine 
with the letter M for memory. 
  
    Rule 9.  All the usual good programming techniques, 
such as indented DO loops ending on CONTINUEs, IF-THEN-ELSE 
where this is clearer, 3 digit statement labels in 
ascending order, no three branch GO TO's, descriptive 
variable names, 4 digit FORMATs, etc, etc. 
  
         The next set of rules relates to coding 
         practices which are necessary for the 
         parallel version of GAMESS to function 
         sensibly.  They must be followed without 
         exception! 
  
    Rule 10.  All open, rewind, and close operations on 
sequential files must be performed with the subroutines 
SEQOPN, SEQREW, and SEQCLO respectively.  You can find 
these routines in IOLIB, they are easy to use.  SQREAD, 
SQWRIT, and various integral I/O routines like PREAD are 
used to process the contents of such files.  The variable 
DSKWRK tells if you are processing a distributed file (one 
split between all compute processes, DSKWRK=.TRUE.) or a 
single file on the master process (DSKWRK=.FALSE., 
resulting in broadcasts of the data from the master to all 
other CPUs). 
  
    Rule 11.  All READ and WRITE statements for the 
formatted files 5, 6, 7 (variables IR, IW, IP, or named 
files INPUT, OUTPUT, PUNCH) must be performed only by the 
master task.  Therefore, these statements must be enclosed 
in "IF (MASWRK) THEN" clauses.  The MASWRK variable is 
found in the /PAR/ common block, and is true on the master 
process only.  This avoids duplicate output from the other 
processes. 
  
    Rule 12.  All error termination is done by "CALL ABRT" 
rather than a STOP statement.  Since this subroutine never 
returns, it is OK to follow it with a STOP statement, as 
compilers may not be happy without a STOP as the final 
executable statment in a routine.  The purpose of calling 
ABRT is to make sure that all parallel tasks get shut down 
properly. 
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Parallel broadcast identifiers 
  
    GAMESS uses DDI calls to pass messages between the 
parallel processes.  Every message is identified by a 
unique number, hence the following list of how the numbers 
are used at present.  If you need to add to these, look at 
the existing code and use the following numbers as 
guidelines to make your decision.  All broadcast numbers 
must be between 1 and 32767. 
  
     20            : Parallel timing 
    100 -  199     : DICTNRY file reads 
    200 -  204     : Restart info from the DICTNRY file 
    210 -  214     : Pread 
    220 -  224     : PKread 
    225            : RAread 
    230            : SQread 
    250 -  265     : Nameio 
    275 -  310     : Free format 
    325 -  329     : $PROP group input 
    350 -  354     : $VEC group input 
    400 -  424     : $GRAD group input 
    425 -  449     : $HESS group input 
    450 -  474     : $DIPDR group input 
    475 -  499     : $VIB group input 
    500 -  599     : matrix utility routines 
    800 -  830     : Orbital symmetry 
    900            : ECP 1e- integrals 
    910            : 1e- integrals 
    920 -  975     : EFP and SCRF integrals 
    980 -  999     : property integrals 
   1000 - 1025     : SCF wavefunctions 
   1030 - 1041     : broadcasts in DFT 
   1050            : Coulomb integrals 
   1200 - 1215     : MP2 
   1300 - 1320     : localization 
   1495 - 1499     : reserved for Jim Shoemaker 
   1500            : One-electron gradients 
   1505 - 1599     : EFP and SCRF gradients 
   1600 - 1602     : Two-electron gradients 
   1605 - 1620     : One-electron hessians 
   1650 - 1665     : Two-electron hessians 
   1700 - 1750     : integral transformation 
   1800            : GUGA sorting 
   1850 - 1865     : GUGA CI diagonalization 
   1900 - 1910     : GUGA DM2 generation 
   2000 - 2010     : MCSCF 
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   2100 - 2120     : coupled perturbed HF 
   2150 - 2200     : MCSCF hessian 
   2300 - 2309     : spin-orbit jobs 
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Disk files used by GAMESS 
 
   These files must be defined by your control language in 
order to execute GAMESS.  For example, on UNIX the "name" 
field shown below should be set in the environment to the 
actual file name to be used.  Most runs will open only a 
subset of the files shown below, with only files 5, 6, 7, 
and 10 used by every run.  Files 1, 2, 3 (both), 4, 5, 6, 
7, and 35 contain formatted data, while all others are 
binary (unformatted) files.  Files ERICFMT, EXTBAS, and 
MCPPATH are used to read data into GAMESS.  Files MAKEFP, 
TRAJECT, RESTART, and PUNCH are supplemental output files, 
containing more concise summaries than the log file for 
certain kinds of data. 
 
unit  name     contents 
----  ----     -------- 
 1   MAKEFP    effective fragment potential from MAKEFP run 
 
 2   ERICFMT   Fm(t) interpolation table data, a data file 
               named ericfmt.dat, supplied with GAMESS. 
 
 3   MCPPATH   a directory of model core potentials and 
               associated basis sets, supplied with GAMESS 
 
 3   EXTBAS    external basis set library (user supplied) 
 
 3   GAMMA     3rd nuclear derivatives 
 
 4   TRAJECT   trajectory results for IRC, DRC, or MD runs. 
               summary of results for RUNTYP=GLOBOP. 
 
35   RESTART   restart data for numerical HESSIAN runs, 
               numerical gradients, or for RUNTYP=VSCF. 
               Used as a scratch unit during MAKEFP. 
  
 5   INPUT     Namelist input file. This MUST be a disk 
               file, as GAMESS rewinds this file often. 
  
 6   OUTPUT    Print output (main log file). 
               If not defined, UNIX systems will use the 
               file "standard output" for this. 
  
 7   PUNCH     Punch output. A copy of the $DATA deck, 
               orbitals for every geometry calculated, 
               hessian matrix, normal modes from FORCE, 
               properties output, etc. etc. etc. 
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 8   AOINTS    Two e- integrals in AO basis 
  
 9   MOINTS    Two e- integrals in MO basis 
  
10   DICTNRY   Master dictionary, for contents see below. 
  
11   DRTFILE   Distinct row table file for -CI- or -MCSCF- 
  
12   CIVECTR   Eigenvector file for -CI- or -MCSCF- 
  
13   CASINTS   semi-transformed ints for FOCAS/SOSCF MCSCF 
               scratch file during spin-orbit coupling 
  
14   CIINTS    Sorted integrals for -CI- or -MCSCF- 
 
15   WORK15    GUGA loops for Hamiltonian diagonal; 
               ordered two body density matrix for MCSCF; 
               scratch storage during GUGA Davidson diag; 
               Hessian update info during 2nd order SCF; 
               [ij|ab] integrals during MP2 gradient 
               density matrices during determinant CI 
  
16   WORK16    GUGA loops for Hamiltonian off-diagonal; 
               unordered GUGA DM2 matrix for MCSCF; 
               orbital hessian during MCSCF; 
               orbital hessian for analytic hessian CPHF; 
               orbital hessian during MP2 gradient CPHF; 
               two body density during MP2 gradient 
  
17   CSFSAVE   CSF data for state to state transition runs. 
  
18   FOCKDER   derivative Fock matrices for analytic hess 
 
19   WORK19    used during CP-MCHF response equations 
  
20   DASORT    Sort file for various -MCSCF- or -CI- steps; 
               also used by SCF level DIIS 
 
21   DFTINTS   four center overlap ints for grid-free DFT 
 
21   DIABDAT   density/CI info during MCSCF diabatization 
 
22   DFTGRID   mesh information for grid DFT 
 
23   JKFILE    shell J, K, and Fock matrices for -GVB-; 
               Hessian update info during SOSCF MCSCF; 
               orbital gradient and hessian for QUAD MCSCF 
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24   ORDINT    sorted AO integrals; 
               integral subsets during Morokuma analysis 
  
25   EFPIND    electric field integrals for EFP 
 
26   PCMDATA   gradient and D-inverse data for PCM runs 
  
27   PCMINTS   normal projections of PCM field gradients 
 
26   SVPWRK1   conjugate gradient solver for SV(P)SE 
 
27   SVPWRK2   conjugate gradient solver for SV(P)SE 
 
26   COSCAV    scratch file for COSMO's solvent cavity 
 
27   COSDATA   output file to process by COSMO-RS program 
 
27   COSPOT    DCOSMO input file, from COSMO-RS program 
 
28   MLTPL     QMFM file, no longer used 
 
29   MLTPLT    QMFM file, no longer used 
 
30   DAFL30    direct access file for FOCAS MCSCF's DIIS, 
               direct access file for NEO's nuclear DIIS, 
               direct access file for DC's DIIS. 
               form factor sorting for Breit spin-orbit 
 
31   SOINTX    Lx 2e- integrals during spin-orbit 
 
32   SOINTY    Ly 2e- integrals during spin-orbit 
 
33   SOINTZ    Lz 2e- integrals during spin-orbit 
 
34   SORESC    RESC symmetrization of SO ints 
 
35   RESTART   documented at the beginning of this list 
 
37   GCILIST   determinant list for general CI program 
 
38   HESSIAN   hessian for FMO optimisations; 
               gradient for FMO with restarts 
 
39   QMMTEI    reserved for future use 
 
40   SOCCDAT   CSF list for SOC; 
               fragment densities/orbitals for FMO 
 
41   AABB41    aabb spinor [ia|jb] integrals during UMP2 
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42   BBAA42    bbaa spinor [ia|jb] integrals during UMP2 
  
43   BBBB43    bbbb spinor [ia|jb] integrals during UMP2 
 
44   REMD      replica exchange molecular dynamics data 
 
45   UNV       LUT-IOTC's unitary transf. of V ints 
 
46   UNPV      LUT-IOTC's unitary transf. of pVp ints 
 
 
     files 50-63 are used for MCQDPT runs. 
     files 50-54 are also used by CODE=IMS MP2 runs. 
 
unit  name     contents 
----  ----     -------- 
50   MCQD50    Direct access file for MCQDPT, its 
               contents are documented in source code. 
51   MCQD51    One-body coupling constants <I/Eij/J> for 
               CAS-CI and other routines 
52   MCQD52    One-body coupling constants for perturb. 
53   MCQD53    One-body coupling constants extracted 
               from MCQD52 
54   MCQD54    One-body coupling constants extracted 
               further from MCQD52 
55   MCQD55    Sorted 2e- AO integrals 
56   MCQD56    Half transformed 2e- integrals 
57   MCQD57    transformed 2e- integrals of (ii|ii) type 
58   MCQD58    transformed 2e- integrals of (ei|ii) type 
59   MCQD59    transformed 2e- integrals of (ei|ei) type 
60   MCQD60    2e- integral in MO basis arranged for 
               perturbation calculations 
61   MCQD61    One-body coupling constants between state 
               and CSF <Alpha/Eij/J> 
62   MCQD62    Two-body coupling constants between state 
               and CSF <Alpha/Eij,kl/J> 
63   MCQD63    canonical Fock orbitals  (FORMATTED) 
64   MCQD64    Spin functions and orbital configuration 
               functions (FORMATTED) 
 
 
unit  name     contents 
----  ----     -------- 
        for RI-MP2 calculations only 
51   RIVMAT    2c-2e inverse matrix 
52   RIT2A     2nd index transformation data 
53   RIT3A     3rd index transformation data 
54   RIT2B     2nd index data for beta orbitals of UMP2 
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55   RIT3B     3rd index data for beta orbitals of UMP2 
 
unit  name     contents 
----  ----     -------- 
        for RUNTYP=NMR only 
61   NMRINT1   derivative integrals for NMR 
62   NMRINT2       "         "       "   " 
63   NMRINT3       "         "       "   " 
64   NMRINT4       "         "       "   " 
65   NMRINT5       "         "       "   " 
66   NMRINT6       "         "       "   " 
        for RUNTYP=MAKEFP (or dynamic polarizability run) 
67   DCPHFH2   magnetic hessian in dynamic polarizability 
68   DCPHF21   magnetic hessian times electronic hessian 
        for NEO runs, only (DAFL30 has nuclear DIIS) 
67   ELNUINT   electron-nucleus AO integrals 
68   NUNUINT   nucleus-nucleus AO integrals 
69   NUMOIN    nucleus-nucleus MO integrals 
70   NUMOCAS   nucleus-nucleus half transformed integrals 
71   NUELMO    nucleus-electron MO integrals 
72   NUELCAS   nucleus-electron half transformed integrals 
        for elongation method, only 
70   ELGDOS    elongation density of states 
71   ELGDAT    elongation frozen/active region data 
72   ELGPAR    elongation geometry optimization info 
74   ELGCUT    elongation cutoff information 
75   ELGVEC    elongation localized orbitals 
77   ELINTA    elongation 2e- for cut-off part 
78   EGINTB    elongation 2e- for next elongation 
79   EGTDHF    elongation TDHF (future use) 
80   EGTEST    elongation test file 
99   PT2INT    integrals for MPQC’s PT2 R-12 correction 
99   PT2RDM    2 particle reduced density for MPQC’s R-12 
99   PT2BAS    geom/basis/orbs for MPQC’s R-12 correction 
 
 
   files 70-98 are used for closed shell Coupled-Cluster, 
       all of these are direct access files. 
 
unit  name     contents 
----  ----     -------- 
70   CCREST    T1 and T2 amplitudes for restarting 
71   CCDIIS    amplitude converger's scratch data 
72   CCINTS    MO integrals sorted by classes 
73   CCT1AMP   T1 amplitudes and some No*Nu intermediates 
               for MMCC(2,3) 
74   CCT2AMP   T2 amplitudes and some No**2 times Nu**2 
               intermediates for MMCC(2,3) 
75   CCT3AMP   M3 moments 
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76   CCVM      No**3 times Nu - type main intermediate 
77   CCVE      No times Nu**3 - type main intermediate 
78   CCAUADS   Nu**3 times No intermediates for (TQ) 
79   QUADSVO   No*Nu**2 times No intermediates for (TQ) 
80   EOMSTAR   initial vectors for EOMCCSD calculations 
81   EOMVEC1   iterative space for R1 components 
82   EOMVEC2   iterative space for R2 components 
83   EOMHC1    singly excited components of H-bar*R 
84   EOMHC2    doubly excited components of H-bar*R 
85   EOMHHHH   intermediate used by EOMCCSD 
86   EOMPPPP   intermediate used by EOMCCSD 
87   EOMRAMP   converged EOMCCSD right (R) amplitudes 
88   EOMRTMP   converged EOMCCSD amplitudes for MEOM=2 
               (if the max. no. of iterations exceeded) 
89   EOMDG12   diagonal part of H-bar 
90   MMPP      diagonal parts for triples-triples H-bar 
91   MMHPP     diagonal parts for triples-triples H-bar 
92   MMCIVEC   Converged CISD vectors 
93   MMCIVC1   Converged CISD vectors for mci=2 
               (if the max. no. of iterations exceeded) 
94   MMCIITR   Iterative space in CISD calculations 
95   EOMVL1    iterative space for L1 components 
96   EOMVL2    iterative space for L2 components 
97   EOMLVEC   converged EOMCCSD left eigenvectors 
98   EOMHL1    singly excited components of L*H-bar 
99   EOMHL2    doubly excited components of L*H-bar 
 
the next group of files (70-95) is for open shell CC: 
 
unit  name     contents 
----  ----     -------- 
70   AMPROCC   restart info CCSD/Lambda eq./EA-EOM/IP-EOM 
71   ITOPNCC   working copy of the same information 
72   FOCKMTX   subsets of F-alpha and F-beta matrices 
73   LAMB23    data during CC(2,3) step 
74   VHHAA     [i,k|j,l]-[i,l|j,k] alpha/alpha 
75   VHHBB     [i,k|j,l]-[i,l|j,k] beta/beta 
76   VHHAB     [i,k|j,l] alpha/beta 
77   VMAA      [j,l|k,a]-[j,a|k,l] alpha/alpha 
78   VMBB      [j,l|k,a]-[j,a|k,l] beta/beta 
79   VMAB      [j,l|k,a] alpha/beta 
80   VMBA      [j,l|k,a] beta/alpha 
81   VHPRAA    [a,j|c,l]-[a,l|c,j] alpha/alpha 
82   VHPRBB    [a,j|c,l]-[a,l|c,j] beta/beta 
83   VHPRAB    [a,j|b,l] alpha/beta 
84   VHPLAA    [a,b|k,l]-[a,l|b,k] alpha/alpha 
85   VHPLBB    [a,b|k,l]-[a,l|b,k] beta/beta 
86   VHPLAB    [a,b|k,l] alpha/beta 
87   VHPLBA    [a,b|k,l] beta/alpha 



Programmer's Reference  5-41 

88   VEAA      [a,b|c,l]-[a,l|b,c] alpha/alpha 
89   VEBB      [a,b|c,l]-[a,l|b,c] beta/beta 
90   VEAB      [a,j|c,d] alpha/beta 
91   VEBA      [a,j|c,d] beta/alpha 
92   VPPPP    all four virtual integrals 
93   INTERM1  one H-bar, some two H-bar, etc. 
94   INTERM2  some two H-bar, etc. 
95   INTERM3  remaining two H-bar intermediates 
96   ITSPACE  iterative subspace data for EA-EOM/IP-EOM 
97   INSTART  initial guesses for EA-EOM or IP-EOM runs 
98   ITSPC3   triples iterative data for EA-EOM 
 
 
unit  name     contents 
----  ----     -------- 
         files 201-239 may be used by RUNTYP=TDHFX 
201   OLI201...running consecutively up to 
239   OLI239 
         files 250-257 are used by divide-and-conquer runs 
         file 30 is used for the DC-DIIS data 
250   DCSUB    subsystem atoms (central and buffer) 
251   DCVEC    subsystem orbitals 
252   DCEIG    subsystem eigenvalues 
253   DCDM     subsystem density matrices 
254   DCDMO    old subsystem density matrices 
255   DCQ      subsystem Q matrices 
256   DCW      subsystem orbital weights 
257   DCEDM    subsystem energy-weighted density matrices 
   files 297-299 are used by hyperpolarizability analysis 
297   LHYPWRK  preordered LMOs 
298   LHYPKW2  reassigned LMOs 
299   BONDDPF  bond dipoles with electric fields 
 
Unit 301 is used for direct access using an internally 
assigned filename during divide and conquer MP2 runs. 
 

disk files in parallel runs 
 
When a file is opened by the master compute process (which 
is rank 0), its name is that defined by the 'setenv'.  On 
other processes (ranks 1 up to p-1, where p is the number 
of running processes), the rank 'nnn' is appended to the 
file name, turning the name xxx.Fyy into xxx.Fyy.nnn.  The 
number of digits in nnn is adjusted according to the total 
number of processes started.  Thus the common situation of 
a SMP node sharing a single disk for several processes, on 
up to the case of a machine like the Cray XT having only 
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one disk partition for all nodes does not lead to file name 
conflicts. 
 
By the way, only the master process needs to read the 
environment to learn file names: these names are sent as 
network messages to the other processes. 
 
When DDI subgroups are not in use, the variable DSKWRK (in 
common /par/) defines the strategy.  A large file like 2e- 
AO integrals (AOINTS) is computed as several smaller files, 
which taken together have all the integrals.  When all 
processes are supposed to process files private to each 
process, DSKWRK is .TRUE., and every process has a file, 
usually containing different values.  For smaller data, 
such as CI vectors, where all processes want to store 
exactly the same data, only the master process needs to 
maintain the file.  This situation is DSKWRK=.FALSE.  When 
the data is to be recovered from disk, only the master 
process reads the disk, after which, the data is sent as a 
broadcast message to all other processes.  The special file 
DICTNRY is always processed in this second way, so data 
recovered from it is the same (to the least significant 
bits) on every process.  Another example of a file read by 
only one process is the run's INPUT file. 
 
If DDI subgroups are used, DSKWRK is ignored, and every 
process opens every file.  These are often left empty, 
except on the master process in each subgroup.  The input 
file (INPUT) is exempt from having the rank added to its 
name, so that a machine with a common file system can have 
all processes read from the same input file.  If the groups 
have different disks, the INPUT must be copied to the 
master process of every group: a simple way to ensure that 
is to copy INPUT to every node's work disk.  Similarly, the 
OUTPUT file (and a few other files like PUNCH) are written 
by every group master.  If the run goes badly, these extra 
output files may be interesting, but most of the time the 
OUTPUT from the master of the first subgroup has enough 
information.  The OUTPUT of non-group-masters is not very 
interesting. 
 
The DICTNRY file is also treated in a special way when 
running in groups, and that should be described here. 
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Contents of the direct access file 'DICTNRY' 
  
     1. Atomic coordinates 
     2. various energy quantities in /ENRGYS/ 
     3. Gradient vector 
     4. Hessian (force constant) matrix 
   5-6. not used 
     7. PTR - symmetry transformation for p orbitals 
     8. DTR - symmetry transformation for d orbitals 
     9. FTR - symmetry transformation for f orbitals 
    10. GTR - symmetry transformation for g orbitals 
    11. Bare nucleus Hamiltonian integrals 
    12. Overlap integrals 
    13. Kinetic energy integrals 
    14. Alpha Fock matrix (current) 
    15. Alpha orbitals 
    16. Alpha density matrix 
    17. Alpha energies or occupation numbers 
    18. Beta Fock matrix (current) 
    19. Beta orbitals 
    20. Beta density matrix 
    21. Beta energies or occupation numbers 
    22. Error function interpolation table 
    23. Old alpha Fock matrix 
    24. Older alpha Fock matrix 
    25. Oldest alpha Fock matrix 
    26. Old beta Fock matrix 
    27. Older beta Fock matrix 
    28. Oldest beta Fock matrix 
    29. Vib 0 gradient in FORCE (numerical hessian) 
    30. Vib 0 alpha orbitals in FORCE 
    31. Vib 0 beta  orbitals in FORCE 
    32. Vib 0 alpha density matrix in FORCE 
    33. Vib 0 beta  density matrix in FORCE 
    34. dipole derivative tensor in FORCE. 
    35. frozen core Fock operator, in AO basis 
    36. RHF/UHF/ROHF Lagrangian (see 402-404) 
    37. floating point part of common block /OPTGRD/ 
int 38. integer part of common block /OPTGRD/ 
    39. ZMAT of input internal coords 
int 40. IZMAT of input internal coords 
    41. B matrix of redundant internal coords 
    42. pristine core Fock matrix in MO basis (see 87) 
    43. Force constant matrix in internal coordinates. 
    44. SALC transformation 
    45. symmetry adapted Q matrix 
    46. S matrix for symmetry coordinates 
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    47. ZMAT for symmetry internal coords 
int 48. IZMAT for symmetry internal coords 
    49. B matrix 
    50. B inverse matrix 
    51. overlap matrix in Lowdin basis, 
        temp Fock matrix storage for ROHF 
    52. genuine MOPAC overlap matrix 
    53. MOPAC repulsion integrals 
    54. exchange integrals for screening 
    55. orbital gradient during SOSCF MCSCF 
    56. orbital displacement during SOSCF MCSCF 
    57. orbital hessian during SOSCF MCSCF 
    58. reserved for Pradipta 
    59. Coulomb integrals in Ruedenberg localizations 
    60. exchange integrals in Ruedenberg localizations 
    61. temp MO storage for GVB and ROHF-MP2 
    62. temp density for GVB 
    63. dS/dx matrix for hessians 
    64. dS/dy matrix for hessians 
    65. dS/dz matrix for hessians 
    66. derivative hamiltonian for OS-TCSCF hessians 
    67. partially formed EG and EH for hessians 
    68. MCSCF first order density in MO basis 
    69. alpha Lowdin populations 
    70. beta Lowdin populations 
    71. alpha orbitals during localization 
    72. beta orbitals during localization 
    73. alpha localization transformation 
    74. beta localization transformation 
    75. fitted EFP interfragment repulsion values 
    76. model core potential information 
    77. model core potential information 
    78. "Erep derivative" matrix associated with F-a terms 
    79. "Erep derivative" matrix associated with S-a terms 
    80. EFP 1-e Fock matrix including induced dipole terms 
    81. interfragment dispersion values 
    82. MO-based Fock matrix without any EFP contributions 
    83. LMO centroids of charge 
    84. d/dx dipole velocity integrals 
    85. d/dy dipole velocity integrals 
    86. d/dz dipole velocity integrals 
    87. unmodified h matrix during SCRF or EFP, AO basis 
    88. PCM solvent operator contribution to Fock 
    89. EFP multipole contribution to one e- Fock matrix 
    90. ECP coefficients 
int 91. ECP labels 
    92. ECP coefficients 
int 93. ECP labels 
    94. bare nucleus Hamiltonian during FFIELD runs 
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    95. x dipole integrals, in AO basis 
    96. y dipole integrals, in AO basis 
    97. z dipole integrals, in AO basis 
    98. former coords for Schlegel geometry search 
    99. former gradients for Schlegel geometry search 
   100. dispersion contribution to EFP gradient 
 
     records 101-248 are used for NLO properties 
 
101. U'x(0)       149. U''xx(-2w;w,w)   200. UM''xx(-w;w,0) 
102.   y          150.    xy            201.    xy 
103.   z          151.    xz            202.    xz 
104. G'x(0)       152.    yy            203.    yz 
105.   y          153.    yz            204.    yy 
106.   z          154.    zz            205.    yz 
107. U'x(w)       155. G''xx(-2w;w,w)   206.    zx 
108.   y          156.    xy            207.    zy 
109.   z          157.    xz            208.    zz 
110. G'x(w)       158.    yy            209. U''xx(0;w,-w) 
111.   y          159.    yz            210.    xy 
112.   z          160.    zz            211.    xz 
113. U'x(2w)      161. e''xx(-2w;w,w)   212.    yz 
114.   y          162.    xy            213.    yy 
115.   z          163.    xz            214.    yz 
116. G'x(2w)      164.    yy            215.    zx 
117.   y          165.    yz            216.    zy 
118.   z          166.    zz            217.    zz 
119. U'x(3w)      167. UM''xx(-2w;w,w)  218. G''xx(0;w,-w) 
120.   y          168.     xy           219.    xy 
121.   z          169.     xz           220.    xz 
122. G'x(3w)      170.     yy           221.    yz 
123.   y          171.     yz           222.    yy 
124.   z          172.     zz           223.    yz 
125. U''xx(0)     173. U''xx(-w;w,0)    224.    zx 
126.    xy        174.    xy            225.    zy 
127.    xz        175.    xz            226.    zz 
128.    yy        176.    yz            227. e''xx(0;w,-w) 
129.    yz        177.    yy            228.    xy 
130.    zz        178.    yz            229.    xz 
131. G''xx(0)     179.    zx            230.    yz 
132.    xy        180.    zy            231.    yy 
133.    xz        181.    zz            232.    yz 
134.    yy        182. G''xx(-w;w,0)    233.    zx 
135.    yz        183.    xy            234.    zy 
136.    zz        184.    xz            235.    zz 
137. e''xx(0)     185.    yz            236. UM''xx(0;w,-w)  
138.    xy        186.    yy            237.     xy 
139.    xz        187.    yz            238.     xz 
140.    yy        188.    zx            239.     yz 
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141.    yz        189.    zy            240.     yy 
142.    zz        190.    zz            241.     yz 
143. UM''xx(0)    191. e''xx(-w;w,0)    242.     zx 
144.     xy       192.    xy            243.     zy 
145.     xz       193.    xz            244.     zz 
146.     yy       194.    yz 
147.     yz       195.    yy 
148.     zz       196.    yz 
                  197.    zx 
                  198.    zy 
                  199.    zz 
 
    245. old NLO Fock matrix 
    246. older NLO Fock matrix 
    247. oldest NLO Fock matrix 
    249. polarizability derivative tensor for Raman 
    250. transition density matrix in AO basis 
    251. static polarizability tensor alpha 
    252. X dipole integrals in MO basis 
    253. Y dipole integrals in MO basis 
    254. Z dipole integrals in MO basis 
    255. alpha MO symmetry labels 
    256. beta MO symmetry labels 
    257. dipole polarization integrals during EFP1 
    258. Vnn gradient during MCSCF hessian 
    259. core Hamiltonian from der.ints in MCSCF hessian 
260-261. reserved for Dan 
    262. MO symmetry integers during determinant CI 
    263. PCM nuclei/induced nuclear Charge operator 
    264. PCM electron/induced nuclear Charge operator 
    265. pristine alpha guess (MOREAD or Huckel+INSORB) 
    266. EFP/PCM IFR sphere information 
    267. fragment LMO expansions, for EFP Pauli 
    268. fragment Fock operators, for EFP Pauli 
    269. fragment CMO expansions, for EFP charge transfer 
    270. reserved for non-orthogonal FMO dimer guess 
    271. orbital density matrix in divide and conquer 
int 272. subsystem data during divide and conquer 
    273. old alpha Fock matrix for D&C Anderson-like DIIS 
    274. old  beta Fock matrix for D&C Anderson-like DIIS 
    275. not used 
    276. Vib 0 Q matrix    in FORCE 
    277. Vib 0 h integrals in FORCE 
    278. Vib 0 S integrals in FORCE 
    279. Vib 0 T integrals in FORCE 
    280. Zero field LMOs during numerical polarizability 
    281. Alpha zero field dens. during num. polarizability 
    282. Beta zero field dens. during num. polarizability 
    283. zero field Fock matrix. during num. polarizability 
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    284. Fock eigenvalues for multireference PT 
    285. density matrix or Fock matrix over LMOs 
    286. oriented localized molecular orbitals 
    287. density matrix of oriented LMOs 
    288. DM1 during CEPA-style calculations 
    289. DM2 during CEPA-style calculations 
    290. pristine (gas phase) h during solvent runs 
    291. "repulsion" integrals during EFP1 
292-299. not used 
    301. Pocc during MP2 (RHF or ZAPT) or CIS grad 
    302. Pvir during MP2 gradient (UMP2= 411-429) 
    303. Wai during MP2 gradient 
    304. Lagrangian Lai during MP2 gradient 
    305. Wocc during MP2 gradient 
    306. Wvir during MP2 gradient 
    307. P(MP2/CIS)-P(RHF) during MP2 or CIS gradient 
    308. SCF density during MP2 or CIS gradient 
    309. energy weighted density in MP2 or CIS gradient 
    311. Supermolecule h during Morokuma 
    312. Supermolecule S during Morokuma 
    313. Monomer 1 orbitals during Morokuma 
    314. Monomer 2 orbitals during Morokuma 
    315. combined monomer orbitals during Morokuma 
    316. RHF density in CI grad; nonorthog. MOs in SCF-MI 
    317. unzeroed Fock matrix when MOs are frozen 
    318. MOREAD orbitals when MOs are frozen 
    319. bare Hamiltonian without EFP contribution 
    320. MCSCF active orbital density 
    321. MCSCF DIIS error matrix 
    322. MCSCF orbital rotation indices 
    323. Hamiltonian matrix during QUAD MCSCF 
    324. MO symmetry labels during MCSCF 
    325. final uncanonicalized MCSCF orbitals 
326-329. not used 
    330. CEL matrix during PCM 
    331. VEF matrix during PCM 
    332. QEFF matrix during PCM 
    333. ELD matrix during PCM 
    334. PVE tesselation info during PCM 
    335. PVE tesselation info during PCM 
    336. frozen core Fock operator, in MO basis 
337-339. not used 
    340. DFT alpha Fock matrix 
    341. DFT beta Fock matrix 
    342. DFT screening integrals 
    343. DFT: V aux basis only 
    344. DFT density gradient d/dx integrals 
    345. DFT density gradient d/dy integrals 
    346. DFT density gradient d/dz integrals 
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    347. DFT M[D] alpha density resolution in aux basis 
    348. DFT M[D] beta density resolution in aux basis 
    349. DFT orbital description 
    350. overlap of true and auxiliary DFT basis 
    351. previous iteration DFT alpha density 
    352. previous iteration DFT beta density 
    353. DFT screening matrix (true and aux basis) 
    354. DFT screening integrals (aux basis only) 
    355. h in MO basis during DDI integral transformation 
    356. alpha symmetry MO irrep numbers if UHF/ROHF 
    357. beta  symmetry MO irrep numbers if UHF/ROHF 
358-369. not used 
    370. left transformation for pVp 
    371. right transformation for pVp 
    370. basis A (large component) during NESC 
    371. basis B (small component) during NESC 
    372. difference basis set A-B1 during NESC 
    373. basis N (rel. normalized large component) 
    374. basis B1 (small component) during NESC 
    375. charges of non-relativistic atoms in NESC 
    376. common nuclear charges for all NESC basis 
    377. common coordinates for all NESC basis 
    378. common exponent values for all NESC basis 
    372. left transformation for V  during RESC 
    373. right transformation for V during RESC 
    374. 2T, T is kinetic energy integrals during RESC 
    375. pVp integrals during RESC 
    376. V integrals during RESC 
    377. Sd, overlap eigenvalues during RESC 
    378. V, overlap eigenvectors during RESC 
    379. Lz integrals 
    380. reserved for Ly integrals. 
    381. reserved for Lx integrals. 
    382. X, AO orthogonalisation matrix during RESC 
    383. Td, eigenvalues of 2T during RESC 
    384. U, eigenvectors of kinetic energy during RESC 
    385. exponents and contraction for the original basis 
int 386. shell integer arrays for the original basis 
    387. exponents and contraction for uncontracted basis 
int 388. shell integer arrays for the uncontracted basis 
    389. Transformation to contracted basis 
    390. S integrals in the internally uncontracted basis 
    391. charges of non-relativistic atoms in RESC 
    392. copy of one e- integrals in MO basis in SO-MCQDPT 
    393. Density average over all $MCQD groups in SO-MCQDPT 
    394. overlap integrals in 128 bit precision 
    395. kinetic ints in 128 bit precision, for relativity 
    396. non-relativistic h, copy used by LUT-IOTCC 
    397. Lx spin-orbit integrals for MCP2E 
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    398. Ly spin-orbit integrals for MCP2E 
    399. Lz spin-orbit integrals for MCP2E 
    400. not used 
    401. dynamic polarizability tensors 
    402. GVB Lagrangian 
    403. MCSCF Lagrangian 
    404. GUGA CI Lagrangian (see 308 for CIS) 
    405. molecular dip-dip polarizability 
    406. MEX search state 1 alpha orbitals 
    407. MEX search state 1 beta orbitals 
    408. MEX search state 2 alpha orbitals 
    409. MEX search state 2 beta orbitals 
    410. not used 
    411. alpha Pocc during UMP2 gradient (see 301-309) 
    412. alpha Pvir during UMP2 gradient 
    413. alpha Wai during UMP2 gradient 
    414. alpha Lagrangian Lai during UMP2 gradient 
    415. alpha Wocc during UMP2 gradient 
    416. alpha Wvir during UMP2 gradient 
    417. alpha P(MP2/CIS)-P(RHF) during UMP2/USFTDDFT grad 
    418. alpha SCF density during UMP2/USFTDDFT gradient 
    419. alpha energy wghted density in UMP2/USFTDDFT grad 
    420. not used 
421-429. same as 411-419, for beta orbitals 
    430. not used 
440-469. reserved for NEO 
    470. QUAMBO expansion matrix 
    471. excitation vectors for FMO-TDDFT 
    472. X+Y in MO basis during TD-DFT gradient 
    473. X-Y in MO basis during TD-DFT gradient 
    474. X+Y in AO basis during TD-DFT gradient 
    475. X-Y in AO basis during TD-DFT gradient 
    476. excited state density during TD-DFT gradient 
    477. energy-weighted density in AO basis for TD-DFT 
478-489. not used 
    490. transition Lagrangian right hand side during NACME 
    491. gradients vectors during NACME 
    492. NACME vectors during NACME 
    493. difference gradient in conical intersection search 
    494. derivative coupling vector in CI search 
    495. mean energy gradient in CI search 
    496. unused 
    497. temp storage of gradient of 1st state in CI search 
    498. interface data for ab initio multiple spawning 
499-500. not used 
    501. A2 cavity data in COSMO 
    502. A3 cavity data in COSMO 
    503. AMTSAV cavity data in COSMO 
504-510. not used 
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    511. effective polarizability in LRD 
    512. C6 coefficients in LRD 
    513. C8 coefficients in LRD 
    514. C10 coefficients in LRD 
    515. atomic pair LRD energy 
    520. Malmqvist factorized orb transformation (wrt 325) 
    521. SVD localized orthogonal orbitals 
    522. SVD localized nonorthogonal orbitals 
    523. initial-to-SVD LMO nonorthogonal transformation 
    524. SVD LMO nonorthogonal-to-orthogonal transformation 
    525. initial-to-SVD LMO orthog transformation (wrt 15) 
    526. 1st order density for orthogonal SVD localized MOs 
    527. collective orbital reordering for Malmqvist 
    528. atom-to-orbital assignment for SVD orbitals 
    529. Malmqvist re-ordered set of SVD LMOs 
    530. oriented SVD density in the order of record 529 
    531. oriented or SVD atom-to-orbital assignment for CT 
    532. block zapped 'standard Fock operator' in AO basis 
    533. overlap of stored atom's MBS with current basis 
    534. occupied+external orthog loc (natural) orbitals 
    535. atom-to-orbital assignment for record 534 orbitals 
    536. specialized SVD density matrix for EXTERNAL NOS 
    537. VVOS no-transfer orbitals+appropriate LMOs. 
    538. occupied+VVOS orbitals right after VVOS formation 
    539. nonorthogonal SVD localized orbitals 
    540. atom-to-orbital assignment for record 539 orbitals 
    541. pristine MCSCF orbs during diabatization 
    542. reference geometry orbs during diabatization 
    543. PT2 state rotation during diabatization 
    544. PT2 state energies during diabatization 
    545. PT2's CAS-CI largest CI coefs, in diabatization 
    546. Group labels for SVD orbitals. 
    547. Atom labels for oriented orbitals. 
    548. Group labels for oriented orbitals. 
    549. Quasi-atomic orbitals during No Charge Transfer 
    550. Current guess orbitals during No Charge Transfer 
    551. Atom labels during No Charge Transfer 
    552. Determinant NCT density for SVD/oriented orbitals. 
    553. Total NCT density mtx for SVD/oriented orbitals. 
    554. pseudodensity mtx from right coupled cluster NOs. 
    555. Unmodified input orbs for checking active space. 
    556. DFTB atom-resolved Mulliken populations 
    557. DFTB shell-resolved Mulliken populations 
    558. DFTB shell-resolved spin populations 
    559. DFTB atom-resolved shift contributions 
    560. DFTB shell-resolved shift contributions 
    561. DFTB shell-resolved shift contributions from spin 
    562. DFTB alpha occupation numbers 
    563. DFTB beta occupation numbers 
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    564. DFTB non-perturbed Hamiltonian in FMO 
    565. DFTB HOP contribution in FMO 
    566. DFTB atom-resolved shift of ESP in FMO 
    567. DFTB atom-resolved shift of ESP in FMO (DFTB3) 
    568. DFTB Slater-Kostner tables 
    569. DFTB reserved 
570-579. unused. 
580-599. reserved for Aaron 
 
    600. alpha loc. transformation in LMOEDA 
    601. alpha localized orbs in LMOEDA 
    602. beta loc. transformation in LMOEDA 
    603. beta localized orbs in LMOEDA 
    604. alpha Coulomb operator in LMOEDA 
    605. alpha exchange operator in LMOEDA 
    606. alpha density in LMOEDA 
    607. beta Coulomb operator in LMOEDA 
    608. beta exchange operator in LMOEDA 
    609. beta density in LMOEDA 
 
610-950. mostly not used, but 
801-809. xx,xy,xz,yx,yy,yz,zx,zy,zz quadrupole MO ints. 
810-815. xx,xy,xz,yy,yz,xx quadrupole AO ints. 
    816. LMO dipole-quadrupole polarizability 
    817. molecular dipole-quadrupole polarizability 
 
    In order to correctly pass data between different 
machine types when running in parallel, it is required that 
a DAF record must contain only floating point values, or 
only integer values.  No logical or Hollerith data may be 
stored.  The final calling argument to DAWRIT and DAREAD 
must be 0 or 1 to indicate floating point or integer values 
are involved.  The records containing integers are so 
marked in the list below. 
  
    Physical record 1 (containing the DAF directory) is 
written whenever a new record is added to the file.  This 
is invisible to the programmer.  The numbers shown above 
are "logical record numbers", and are the only thing that 
the programmer need be concerned with. 
 


