
Programmer's Reference 5-1

 (21 June 2016)

 * *
 * Section 5 - Programmer's Reference *
 * *

 This section describes features of GAMESS programming
which are true for all machines. See the section 'hardware
specifics' for information about specific machines. The
contents of this section are:

Installation	
 overview	
 2	

Running	
 Distributed	
 Data	
 Parallel	
 GAMESS	
 5	

parallelization	
 history	
 5	

DDI	
 compute	
 and	
 data	
 server	
 processes	
 6	

memory	
 allocations	
 and	
 check	
 jobs	
 11	

representative	
 performance	
 examples	
 13	

Altering	
 program	
 limits	
 22	

Names	
 of	
 source	
 code	
 modules	
 24	

Programming	
 Conventions	
 30	

Parallel	
 broadcast	
 identifiers	
 33	

Disk	
 files	
 used	
 by	
 GAMESS	
 35	

disk	
 files	
 in	
 parallel	
 runs	
 41	

Contents	
 of	
 the	
 direct	
 access	
 file	
 'DICTNRY'	
 43	

Programmer's Reference 5-2

Installation overview

 Very specific compiling directions are given in a file
provided with the GAMESS distribution, namely
 ~/gamess/machines/readme.unix
and this should be followed closely. The directions here
are of a more general nature.

 Before starting the installation, you should also see
the pages about your computer in the 'Hardware Specifics'
section of this manual, and at the compiler version notes
that are kept in the script 'comp'. There might be some
special instructions for your machine.

 The first step in installing GAMESS should be to print
the manual. If you are reading this, you've got that done!
The second step would be to get the source code activator
compiled and linked (note that the activator must be
activated manually before it is compiled). Third, you
should now compile all the quantum chemistry sources.
Fourth, compile the DDI message passing library, and its
process kickoff program. Fifth, link the GAMESS program.
Finally, run all the short examples provided with GAMESS,
and very carefully compare the key results shown in the
'sample input' section against your outputs. These
"correct" results are from a IBM RS/6000, so there may be
very tiny (last digit) precision differences for other
machines. That's it! The rest of this section gives a
little more detail about some of these steps.

 * * * * *

 GAMESS will run on essentially any machine with a
FORTRAN 77 compiler. However, even given the F77 standard
there are still a number of differences between various
machines. For example, some chips still use 32 bit
integers, as primitive as that may seem, while many chips
allow for 64 bit processing (and hence very large run-time
memory usage). It is also necessary to have a C compiler,
as the message passing library is implemented entirely in
that language.

 Although there are many types of computers, there is
only one (1) version of GAMESS.

 This portability is made possible mainly by keeping
machine dependencies to a minimum (that is, writing in

Programmer's Reference 5-3

FORTRAN77, not vendor specific language extensions). The
unavoidable few statements which do depend on the hardware
are commented out, for example, with "*I64" in columns 1-4.
Before compiling GAMESS on a 64 bit machine, these four
columns must be replaced by 4 blanks. The process of
turning on a particular machine's specialized code is
dubbed "activation".

 A semi-portable FORTRAN 77 program to activate the
desired machine dependent lines is supplied with the GAMESS
package as program ACTVTE. Before compiling ACTVTE on your
machine, use your text editor to activate the very few
machine dependent lines in ACTVTE before compiling it. Be
careful not to change the DATA initialization!

 * * * * *

 The quantum chemistry source code of GAMESS is in the
directory
 ~/gamess/source
and consists almost entirely of unactivated FORTRAN source
code, stored as *.src. There is a bit of C code in this
directory to implement runtime memory allocation.

 The task of building an executable for GAMESS is:
 activate compile link
 *.SRC ---> *.FOR ---> *.OBJ ---> *.EXE
 source FORTRAN object executable
 code code code image
where the intermediate files *.FOR and *.OBJ are discarded
once the executable has been linked. It may seem odd at
first to delete FORTRAN code, but this can always be
reconstructed from the master source code using ACTVTE.

 The advantage of maintaining only one master version is
obvious. Whenever any improvements are made, they are
automatically in place for all the currently supported
machines. There is no need to make the same changes in a
plethora of other versions.

 * * * * *

 The Distributed Data Interface (DDI) is the message
passing layer, supporting the parallel execution of GAMESS.
It is stored in the directory tree
 ~/gamess/ddi
It is necessary to compile this software, even if you don't
intend to run on more than one processor. This directory
contains a file readme.ddi with directions about compiling,

Programmer's Reference 5-4

and customizing your computer to enable the use of System V
memory allocation routines. It also has information about
some high end parallel computer systems.

 * * * * *

 The control language needed to activate, compile, and
link GAMESS on your brand of computer involves several
scripts, namely:
 COMP compiles a single quantum chemistry module.
 COMPALL compiles all quantum chemistry source modules.
 COMPDDI compiles the distributed data interface, and
 generates a process kickoff program, ddikick.x.
 LKED link-edit (links) together quantum chemistry
 object code, and the DDI library, to produce a
 binary executable gamess.x.
 RUNGMS runs a GAMESS job, in serial or parallel.
 RUNALL uses RUNGMS to run all the example jobs.
There are files related to some utility programs:
 MBLDR.* model builder (internal to Cartesian)
 CARTIC.* Cartesian to internal coordinates
 CLENMO.* cleans up $VEC groups
 DK3.F prepare relativistic AO contractions.
There are files related to two-D X-windows graphics, in:
 ~/gamess/graphics
Better back-end graphics (3D as well as 2D) is available in
the MacMolPlt program, now available for all popular
desktop operating systems.

Programmer's Reference 5-5

Running Distributed Data Parallel GAMESS

 GAMESS consists of many FORTRAN files implementing its
quantum chemistry, and some C language files implementing
the Distributed Data Interface (DDI). The directions for
compiling DDI, configuring the system parameters to permit
execution of DDI programs, and how to use the 'ddikick.x'
program which "kicks off" GAMESS processes may be found in
the file readme.ddi. If you are not the person installing
the GAMESS software, you can skip reading that.

 Efficient use of GAMESS requires an understanding of
three critical issues: The first is the difference between
two types of memory (replicated MWORDS and distributed
MEMDDI) and how these relate to the physical memory of the
computer which you are using. Second, you must understand
to some extent the degree to which each type of computation
scales so that the proper number of CPUs is selected.
Finally, many systems run -two- GAMESS processes on every
processor, and if you read on you will find out why this is
so.

 Since all code needed to implement the Distributed Data
Interface (DDI) is provided with the GAMESS source code
distribution, the program compiles and links ready for
parallel execution on all machine types. Of course, you
may choose to run on only one processor, in which case
GAMESS will behave as if it is a sequential code, and the
full functionality of the program is available.

parallelization history

 We began to parallelize GAMESS in 1991 as part of the
joint ARPA/Air Force piece of the Touchstone Delta project.
Today, nearly all ab initio methods run in parallel,
although some of these still have a step or two running
sequentially only. Only the RHF+CI gradients have no
parallel method coded. We have not parallelized the semi-
empirical MOPAC runs, and probably never will. Additional
parallel work occurred as a result of a DoD CHSSI software
initiative in 1996. This led to the DDI-based parallel
RHF+MP2 gradient program, after development of the DDI
programming toolkit itself. Since 2002, the DoE program
SciDAC has sponsored additional parallelization. The DDI
toolkit has been used since its 1999 introduction to add
codes for UHF+MP2 gradient, ROHF+ZAPT2 energy, and MCSCF

Programmer's Reference 5-6

wavefunctions as well as their analytic Hessians or MCQDPT2
energy correction.

 In 1991, the parallel machine of choice was the Intel
Hypercube although small clusters of workstations could
also be used as a parallel computer. In order to have
the best blend of portability and functionality, we chose
in 1991 to use the TCGMSG message passing library rather
than one of the early vendor's specialized libraries. As
the major companies began to market parallel machines, and
as MPI version 1 emerged as a standard, we began to use
MPI on some equipment in 1996, while still using the very
resilient TCGMSG library on everything else. However, in
June 1999, we retired our old friend TCGMSG when the
message passing library used by GAMESS changed to the
Distributed Data Interface, or DDI. An SMP-optimized
version of DDI was included with GAMESS in April 2004.

 Three people have been extremely influential upon the
current parallel methodology. Theresa Windus, a graduate
student in the early 1990s, created the first parallel
versions. Graham Fletcher, a postdoc in the late 1990s,
is responsible for the addition of distributed data
programming concepts. Ryan Olson rewrote the DDI software
in 2003-4 to support the modern SMP architectures well, and
this was released in April 2004 as our standard message
passing implementation.

DDI compute and data server processes

 DDI contains the usual parallel programming calls, such
as initialization/closure, point to point messages, and
the collective operations global sum and broadcast. These
simple parts of DDI support all parallel methods developed
in GAMESS from 1991-1999, which were based on replicated
storage rather than distributed data. However, DDI also
contains additional routines to support distributed memory
usage.

 DDI attempts to exploit the entire system in a scalable
way. While our early work concentrated on exploiting the
use of p processors and p disks, it required that all data
in memory be replicated on every one of the p CPUs. The
use of memory also becomes scalable only if the data is
distributed across the aggregate memory of the parallel
machine. The concept of distributed memory is contained in
the Remote Memory Access portion of MPI version 2, but so
far MPI-2 is not available from American computer vendors.

Programmer's Reference 5-7

The original concept of distributed memory was implemented
in the Global Array toolkit of Pacific Northwest National
Laboratory (see http://www.emsl.pnl.gov/pub/docs/global).

 Basically, the idea is to provide three subroutine
calls to access memory on other processors (in the local or
even remote nodes): PUT, GET, and ACCUMULATE. These give
access to a class of memory which is assumed to be slower
than local memory, but faster than disk:

 <--- fastest slowest --->
 registers cache(s) local_memory remote_memory disks tapes
 <--- smallest biggest --->

Because DDI accesses memory on other CPUs by means of an
explicit subroutine call, the programmer is aware that a
message must be transmitted. This awareness of the access
overhead should encourage algorithms that transfer many
data items in a single message. Use of a subroutine call
to reach remote memory is a recognition of the non-uniform
memory access (NUMA) nature of parallel computers. In
other words, the Distributed Data Interface (DDI) is an
explicitly message passing implementation of global shared
memory.

 In order to have one CPU pass data items to a second
CPU when the second CPU needs them, without significant
delay, the computing job on the first CPU must interrupt
its computation briefly to furnish the data. This type of
communication is referred to as "one sided messages" or
"active messages" since the first CPU is an unwitting
participant in the process, which is driven entirely by the
requirements of the second CPU.

Programmer's Reference 5-8

 The Cray T3E has a library named SHMEM to support this
type of one sided messages (and good hardware support for
this too) so, on the T3E, GAMESS runs as a single process
per CPU. Its memory image looks like this:

 node 0 node 1
 p=0 p=1
 --------------- ---------------
 | GAMESS | | GAMESS |
 | quantum | | quantum |
 | chem code | | chem code |
 --------------- ---------------
 | DDI code | | DDI code |
 --------------- --------------- input keywords:
 | replicated | | replicated | <-- MWORDS
 | data | | data |

 | | | | | | <-- MEMDDI
 | | distributed| | distributed | |
 | | data | | data | |
 | | | | | |
 | | | | | |
 | | | | | |
 | --------------- --------------- |

where the box drawn around the distributed data is meant to
imply that a large data array is residing in the memory of
all processes (in this example, half on one and half on the
other).

 Note that the input keyword MWORDS gives the amount of
storage used to duplicate small matrices on every CPU,
while MEMDDI gives the -total- distributed memory required
by the job. Thus, if you are running on p CPUs, the memory
that is used on any given CPU is

 total on any 1 CPU = MWORDS + MEMDDI/p

Since MEMDDI is very large, its units are in millions of
words. Since good execution speed requires that you not
exceed the physical memory belonging to your CPUs, it is
important to understand that when MEMDDI is large, you will
need to choose a sufficiently large number of CPUs to keep
the memory on each reasonable.

 To repeat, the DDI philosophy is to add more processors
not just for their compute performance or extra disk space,

Programmer's Reference 5-9

but also to aggregate a very large total memory. Bigger
problems will require more CPUs to obtain sufficiently
large total memories! We will give an example of how you
can estimate the number of CPUs a little ways below.

 If the GAMESS task running as process p=1 in the above
example needs some values previously computed, it issues a
call to DDI_GET. The DDI routines in process p=1 then
figure out where this "patch" of data actually resides in
the big rectangular distributed storage. Suppose this is
on process p=0. The DDI routines in p=1 send a message to
p=0 to interupt its computations, after which p=0 sends a
bulk data message to process p=1's buffer. This buffer
resides in part of the replicated storage of p=1, where
computations can occur. Note that the quantum chemistry
layer of process p=1 was sheltered from most of the details
regarding which CPU owned the patch of data that process
p=1 wanted to obtain. These details are managed by the DDI
layer.

 Note that with the exception of DDI_ACC's addition of
new terms into a distributed array, no arithmetic is done
directly upon the distributed data. Instead, distributed
data is accessed only by DDI_GET, DDI_PUT (its counterpart
for storage of data items), and DDI_ACC (which accumulates
new terms into the distributed data). DDI_GET and DDI_PUT
can be thought of as analogous to FORTRAN READ and WRITE
statements that transfer data between disk storage and
local memory where computations may occur.

 It is the programmer's challenge to minimize the
number of GET/PUT/ACC calls, and to design algorithms that
maximize the chance that the patches of data are actually
within the local CPU's portion of the distributed data.

Programmer's Reference 5-10

 Since the SHMEM library is available only on a few
machines, all other platforms adopt the following memory
model, which involves –two- GAMESS processes running on
every processor:

 node 0 node 1
 p=0 p=1
 --------------- ---------------
 | GAMESS X| | GAMESS X| compute
 | quantum | | quantum | processes
 | chem code | | chem code |
 --------------- ---------------
 | DDI code | | DDI code |
 --------------- --------------- keyword:
 | replicated | | replicated | <-- MWORDS
 | data | | data |
 --------------- ---------------

 p=2 p=3
 --------------- ---------------
 | GAMESS | | GAMESS | data
 | quantum | | quantum | servers
 | chem code | | chem code |
 --------------- ---------------
 | DDI code X| | DDI code X|
 --------------- ---------------
 --- keyword:
 | | | | | | <-- MEMDDI
 | | distributed| | distributed | |
 | | data | | data | |
 | | | | | |
 | | | | | |
 | | | | | |
 | --------------- --------------- |

The first half of the processes do quantum chemistry, and
the X indicates that they spend most of their time
executing some sort of chemistry. Hence the name "compute
process". Soon after execution, the second half of the
processes call a DDI service routine which consists of an
infinite loop to deal with GET, PUT, and ACC requests until
such time as the job ends. The X shows that these "data
servers" execute only DDI support code. (This makes the
data server's quantum chemistry routines the equivalent of
the human appendix). The whole problem of interupts is now
in the hands of the operating system, as the data servers
are distinct processes. To follow the same example as

Programmer's Reference 5-11

before, when the compute process p=1 needs data that turns
out to reside on process 0, a request is sent to the data
server p=2 to transfer information back to the compute
process p=1. The compute process p=0 is completely unaware
that such a transaction has occurred.

 The formula for the memory required by any single CPU
is unchanged, if p is the total number of CPUs used,
 total on any 1 CPU = MWORDS + MEMDDI/p.

 As a technical matter, if you are running on a system
where all processors are in the same node (the SGI Altix is
an example), or if you are running on an IBM SP where LAPI
assists in implementing one-sided messaging, then the data
server processes are not started. The memory model in the
illustration above is correct, if you just mentally omit
the data server processes from it. In all cases, where the
SHMEM library is not used, the distributed arrays are
created by System V memory calls, shmget/shmat, and their
associated semaphore routines. Your system may need to be
reconfigured to allow allocation of large shared memory
segments, see 'readme.ddi' for more details.

 The parallel CCSD and CCSD(T) programs add a third kind
of memory to the mix: node-replicated. This is data (e.g.
the doubles amplitudes) that is stored only once per node.
Thus, this is more copies of the data than once per
parallel job (fully distributed MEMDDI) but fewer than once
per CPU (replicated MWORDS). A picture of the memory model
for the CCSD(T) program can be found in the "readme.ddi"
file, so is not duplicated here. There is presently no
keyword for this type of memory, but the system limit on
the total SystemV memory does apply. It is important to
perform a check run when using CCSD(T) and carefully follow
the printout of its memory requirements.

memory allocations and check jobs

 At present, not all runs require distributed memory.
For example, in an SCF computation (no hessian or MP2 to
follow) the memory needed is on the order of the square of
the basis set size, for such quantities as the orbital
coefficients, density, Fock, overlap matrices, and so on.
These are simply duplicated on every CPU in the MWORDS (or
the older keyword MEMORY in $SYSTEM) region. In this case
the data server processes still run, but are dormant
because no distributed memory access is attempted.

Programmer's Reference 5-12

 However, closed and open shell MP2 calculations, MCSCF
wavefunctions, and their analytic hessian or MCQPDT energy
correction do use distributed memory when run in parallel.
Thus it is important to know how to obtain the correct
value for MEMDDI in a check run, and how to compute how
many CPUs are needed to do the run.

 Check runs (EXETYP=CHECK) need to run quickly, and the
fastest turn around always comes on one CPU only. Runs
which do not currently exploit MEMDDI distributed storage
will formally allocate their MWORDS needs, and feel out
their storage needs while skipping almost all of the real
work. Since MWORDS is replicated, the amount that is
needed on 1 CPU remains unchanged if you later do the true
computation on more than 1 CPU.

 Check jobs which involve MEMDDI storage are a little
bit trickier. As noted, we want to run on only 1 CPU to
get fast turn around. However, MEMDDI is typically a large
amount of memory, and this is unlikely to be available on
a single CPU. The solution is that the check job will not
actually allocate the MEMDDI storage, instead it just
remembers what you gave as input and checks to see if this
will be adequate. As someone once said, MEMDDI is a "fairy
tale number" during a check job. So, you can input a big
value like MEMDDI=25000 (25,000 million words is equal to
25,000 * 1,000,000 * 8 = 200 GBytes) and run this check job
on a computer with only 1024 MB = 1 GB of memory per
processor. Let us say that a closed shell MP2 check run
for this case gives the output of
 SCALED *PER-NODE* MEMORY REQUIREMENT
 NODES DISTRIBUTED/MWORDS REPLICATED/WORDS TOTAL/MBYTES
 1 952 7284508 7624
The real run requires MWORDS=8 MEMDDI=960. Note that we
have just rounded up a bit from the 7.3 and 952 in this
output, for safety.

 Of course, the actual computation will have to run on a
large number of such processors, because you don't have 200
GB on your CPU, we are assuming 1024 MB (1 GB). Let us
continue to compute how many processors are needed. We
need to reserve some memory for the operating system (25
MB, say) and for the GAMESS program and local storage (let
us say 50 MB, for GAMESS is a big program, and the compute
processes should be swapped into memory). Thus our
hypothetical 1024 MB processor has 950 MB available,
assuming no one else is running. In units of words, this
machine has 950/8 = 118 million words available for your
run. We must choose the number of processors p to satisfy

Programmer's Reference 5-13

 needed <= available
 MWORDS + MEMDDI/p <= free physical memory
 8 + 960/p <= 118
so solving for p, we learn this example requires p >= 9
compute processes. The answer for roughly 8 GB of
distributed memory on 1 GB processors was not 8, because
the O/S, GAMESS itself, and the MWORDS requirements
together mean less than 1 GB could be contributed to the
distributed total. More CPUs than 9 do not require
changing MWORDS or MEMDDI, but will run faster than 9.
Fewer CPUs than 9 do not have enough memory to run!

 One more subtle point about CHECK runs with MEMDDI is
that since you are running on 1 CPU only, the code does not
know that you wish to run the parallel algorithm instead of
the sequential algorithm. You must force the CHECK job
into the parallel section of the program by
 $system parall=.true. $end
There's no harm leaving this line in for the true runs, as
any job with more than one compute process is parallel
regardless of the input keyword PARALL.

 The check run for MCQDPT jobs will print three times
a line like this
 MAXIMUM MEMDDI THAT CAN BE USED IN ... IS x MWORDS
Typically the 2nd such step, transforming over all
occupied and virtual canonical orbitals, will be the
largest of the three requirements. Its size can be
guesstimated before running, as
 (Nao*Nao+Nao)/2 * ((Nocc*Nocc+Nocc)/2 + Nocc*Nvirt)
where Nocc = NMOFZC+NMODOC+NMOACT, Nvirt=NMOEXT, and
Nao is the size of the atomic basis. Unlike the closed
shell MP2 program, this section still does extensive
I/O operations even when MEMDDI is used, so it may be
useful to consider the three input keywords DOORD0,
PARAIO, and DELSCR when running this code.

representative performance examples

 This section describes the way in which the various
quantum chemistry computations run in parallel, and shows
some typical performance data. This should give you as the
user some idea how many CPUs can be efficiently used for
various SCFTYP and RUNTYP jobs

 The performance data you will see below were obtained
on a 16 CPU Intel Pentium II Linux (Beowulf-type) cluster

Programmer's Reference 5-14

costing $49,000, of which $3,000 went into the switched
Fast Ethernet component. 512 MB/CPU means this cluster has
an aggregate memory of 8 GB. For more details, see
 http://www.msg.chem.iastate.edu/GAMESS/dist.pc.shtml.
This is a low quality network, which exposes jobs with
higher communication requirements, by noting when the wall
time is much longer than the CPU.

 The HF wavefunctions can be evaluated in parallel using
either conventional disk storage of the integrals, or via
direct recomputation of the integrals. Some experimenting
will show which is more effective on your hardware. As an
example of the scaling performance of RHF, ROHF, UHF, or
GVB jobs that involve only computation of the energy or its
gradient, we include here a timing table from the 16 CPU PC
cluster. The molecule is luciferin, which together with the
enzyme luciferase is involved in firefly light production.
The chemical formula is C11N2S2O3H8, and RHF/6-31G(d) has
294 atomic orbitals. There's no molecular symmetry. The
run is done as direct SCF, and the CPU timing data is

 p=1 p=2 p=4 p=8 p=16
 1e- ints 1.1 0.6 0.4 0.3 0.2
 Huckel guess 14 12 11 10 10
 15 RHF iters 5995 2982 1493 772 407
 properties 6.0 6.6 6.6 6.8 6.9
 1e- gradient 9.7 4.7 2.3 1.2 0.7
 2e- gradient 1080 541 267 134 68
 ---- ---- ---- ---- ----
 total CPU 7106 3547 1780 925 492 seconds
 total wall 7107 3562 1815 950 522 seconds

Note that direct SCF should run with the wall time very
close to the CPU time as there is essentially no I/O and
not that much communication (MEMDDI storage is not used by
this kind of run). Running the same molecule as
DFTTYP=B3LYP yields

 p=1 p=2 p=4 p=8 p=16
 1e- ints 1.1 0.7 0.3 0.3 0.2
 Huckel guess 14 12 10 10 9
 23 DFT iters 14978 7441 3681 1876 961
 properties 6.6 6.4 6.5 7.0 6.5
 1e- gradient 9.7 4.7 2.3 1.3 0.7
 2e- grid grad 5232 2532 1225 595 303
 2e- AO grad 1105 550 270 136 69
 ---- ---- ---- ---- ----

Programmer's Reference 5-15

 total CPU 21347 10547 5197 2626 1349
 total wall 21348 10698 5368 2758 1477

and finally if we run an RHF analytic hessian, using AO
basis integrals, the result is

 p=1 p=2 p=4 p=8 p=16
 1e- ints 1.2 0.6 0.4 0.3 0.2
 Huckel guess 14 12 10 10 10
 14 RHF iters 5639 2851 1419 742 390
 properties 6.4 6.5 6.6 7.0 6.7
 1e- grd+hss 40.9 20.9 11.9 7.7 5.8
 2e- grd+hss 21933 10859 5296 2606 1358
 CPHF 40433 20396 10016 5185 2749
 ----- ----- ----- ---- ----
 total CPU 68059 34146 16760 8559 4519
 total wall 68102 34273 17430 9059 4978

CPU speedups for 1->16 processors for RHF gradient, DFT
gradient, and RHF analytic hessian are 14.4, 15.8, and 15.1
times faster, respectively. The wall clock times are close
to the CPU time, indicating very little communication is
involved. If you are interested in an explanation of how
the parallel SCF is implimented, see the main GAMESS paper,
 M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert,
 M.S.Gordon, J.H.Jensen, S.Koseki, N.Matsunaga,
K.A.Nguyen, S.J.Su, T.L.Windus, M.Dupuis, J.A.Montgomery
 J.Comput.Chem. 14, 1347-1363(1993)

 The CIS energy and gradient code is also programmed to
have the construction of Fock-like matrices as its
computational kernel. Its scaling is therefore very
similar to that just shown, for porphin C20N4H14, DH(d,p)
basis, 430 AOs:
 p=1 p=2 p=4 p=8 p=16
 setup 25 25 25 25 25
 1e- ints 5.1 2.7 1.5 1.0 0.6
 orb. guess 30 25 23 22 21
 RHF iters 1647 850 452 251 152
 RHF props 19 19 19 19 19
 CIS energy 36320 18166 9098 4620 2398
 CIS lagrang 6092 3094 1545 786 408
 CPHF 20099 10183 5163 2688 1444
 CIS density 2468 1261 632 324 170
 CIS props 19 19 19 19 19
 1e- grad 40.9 18.2 9.2 4.7 2.4
 2e- grad 1644 849 423 223 122

Programmer's Reference 5-16

 ----- ----- ---- ---- ----
 total CPU 68424 34526 17420 8994 4791
 total wall 68443 34606 17853 9258 4985
which is a speedup of 14.3 for 1->16.

 For the next type of computation, we discuss the MP2
correction. For closed shell RHF + MP2 and unrestricted
UHF + MP2, the gradient program runs in parallel using
distributed memory, MEMDDI. In addition, the ROHF + MP2
energy correction for OSPT=ZAPT runs in parallel using
distributed memory, but OSPT=RMP does not use MEMDDI in
parallel jobs. All distributed memory parallel MP2 runs
resemble RHF+MP2, which is therefore the only example given
here.

 The example is a benzoquinone precursor to hongconin, a
cardioprotective natural product. The formula is C11O4H10,
and 6-31G(d) has 245 AOs. There are 39 valence orbitals
included in the MP2 treatment, and 15 core orbitals.
MEMDDI must be 156 million words, so the memory computation
that was used above tells us that our 512 MB/CPU PC cluster
must have at least three processors to aggregate the
required MEMDDI. MOREAD was used to provide converged RHF
orbitals, so only 3 RHF iterations are performed. The
timing data are CPU and wall times (seconds) in the 1st/2nd
lines:

 p=3 p=4 p=12 p=16
 RHF iters 241 181 65 51
 243 184 69 55
 MP2 step 5,953 4,399 1,438 1,098
 7,366 5,669 2,239 1,700
 2e- grad 1,429 1,135 375 280
 1,492 1,183 413 305
 ----- ----- --- ---
 total CPU 7,637 5,727 1,890 1,440
 total wall 9,116 7,053 2,658 2,077

 3-->12 4-->16
 CPU speedup 4.04 3.98
 wall speedup 3.43 3.40

The wall clock time will be closer to the CPU time if the
quality of the network between the computer is improved
(remember, this run used just switched Fast Ethernet). As
noted, the number of CPUs is more influenced by a need to
aggregate the necessary total MEMDDI, more than by concerns

Programmer's Reference 5-17

about scalability. MEMDDI is typically large for MP2
parallel runs, as it is proportional to the number of
occupied orbitals squared times the number of AOs squared.

 For more details on the distributed data parallel MP2
program, see
 G.D.Fletcher, A.P.Rendell, P.Sherwood
 Mol.Phys. 91, 431-438(1997)
 G.D.Fletcher, M.W.Schmidt, M.S.Gordon
 Adv.Chem.Phys. 110, 267-294 (1999)
 G.D.Fletcher, M.W.Schmidt, B.M.Bode, M.S.Gordon
 Comput.Phys.Commun. 128, 190-200 (2000)

 The next type of computation we will consider is
analytic computation of the nuclear Hessian (force constant
matrix). The performance of the RHF program, based on AO
integrals, was given above, as its computational kernel
(Fock-like builds) scales just as the SCF itself. However,
for high spin ROHF, low spin open shell SCF and TCSCF (both
done with GVB), the only option is MO basis integrals. The
integral transformation is parallel according to
 T.L.Windus, M.W.Schmidt, M.S.Gordon
 Theoret.Chim.Acta 89, 77-88(1994).
It distributes 'passes' over processors, so as to
parallelize the transformation's CPU time but not the
replicated memory, or the AO integral time. Finally the
response equation step is hardly parallel at all. The test
example is an intermediate in the ring opening of
silacyclobutane, GVB-PP(1) or TCSCF, 180 AOs for 6-
311G(2d,2p):
 p=1 p=2 p=4 p=8 p=16
 2e- ints 83 42 21 11 5
 GVB iters 648 333 179 104 67
 replicate 2e- n/a 81 81 81 82
 transf. 476 254 123 67 51
 1e- grd+hss 7 4 2 2 1
 2e- grd+hss 4695 2295 1165 596 313
 CP-TCSCF 344 339 331 312 325
 ---- ---- ---- ---- ----
 total CPU 6256 3351 1904 1189 848
 total wall 6532 3538 2072 1399 1108

Clearly, the final response equation (CPHF) step is a
sequential bottleneck, as is the fact that the orbital
hessian in this step is stored entirely on the disk space
of CPU 0. Since the integral transformation is run in
replicated MWORDS memory, rather than distributing this,

Programmer's Reference 5-18

and since it also needs a duplicated AO integral file be
stored on every CPU, the code is clearly not scalable to
very many processors. Typically we would not request more
than 3 or 4 processors for an analytic ROHF or GVB hessian.

 The final analytic hessian type is for MCSCF. The
scalability of the MCSCF wavefunction will be given just
below, but the response equation step for MCSCF is clearly
quite scalable. The integral transformation for the
response equation step uses distributed memory MEMDDI, and
should scale like the MP2 program (documented above). The
test case has 8e- in 8 orbitals, and the time reflect this,
with most of the work involving the 4900 determinants.
Total speedup for 4->16 is 4.11, due to luckier work
distributing for 16 CPUs:

 p=4 p=16
 MCSCF wfn 113.5 106.1
 DDI transf. 68.4 19.3
 1e- grd+hss 1.5 0.6
 2e- grd+hss 2024.9 509.8
 CPMCHF RHS 878.8 225.8 (RHS=right hand
sides)
 CPMCHF iters 115343.5 27885.9
 -------- --------
 total CPU 118430.8 28747.6
 total wall 119766.0 30746.4

This code can clearly benefit from using many processors,
with scalability of the MCSCF step itself almost moot.

 Now lets turn to MCSCF energy/gradient runs. We will
illustrate two convergers, SOSCF and then FULLNR. The
former uses a 'pass' type of integral transformation (ala
the GVB hessian job above), and runs in replicated memory
only (no MEMDDI). The FULLNR converger is based on the MP2
program's distributed memory integral transformation, so it
uses MEMDDI. In addition, the parallel implementation of
the FULLNR step never forms the orbital hessian explicitly,
doing Davidson style iterations to predict the new
orbitals. Thus the memory demand is almost entirely
MEMDDI.

 The example we choose is at a transition state for the
water molecule assisted proton transfer in the first
excited stat of 7-azaindole. The formula is C7N2H6(H2O),
there are 190 active orbitals, and the active space is the

Programmer's Reference 5-19

10 pi electrons in 9 pi orbitals of the azaindole portion.
There are 15,876 determinants used in the MCSCF
calculation, and 5,292 CSFs in the perturbation calculation
to follow. See Figure 6 of G.M.Chaban, M.S.Gordon
J.Phys.Chem.A 103, 185-189(1999) if you are interested in
this chemistry. The timing data for the SOSCF converger
are

 p=1 p=2 p=4 p=8 p=16
 dup. 2e- ints 327.6 331.3 326.4 325.8 326.5
 transform. 285.1 153.6 88.4 57.8 47.3
 det CI 39.3 39.4 38.9 38.3 38.1
 2e- dens. 0.4 0.5 0.5 0.5 0.5
 orb. update 39.2 25.9 17.4 12.8 11.0
 iters 2-16 5340.0 3153.5 2043.7 1513.6 1308.5
 1e- grad 5.3 2.3 1.3 0.7 0.4
 2e- grad 695.6 354.9 179.4 93.2 50.9
 ------ ------ ------ ------ ------
 total CPU 6,743 4,071 2,705 2,052 1,793
 total wall 13,761 8,289 4,986 3,429 3,899

whereas the FULLNR convergers runs like this

 p=1 p=2 p=4 p=8 p=16
 2e- DDI trans. 2547 1385 698 354 173
 det. CI 39 39 38 38 38
 DM2 0.5 0.5 0.5 0.5 0.5
 FULLNR 660 376 194 101 51
 iters 2-9 24324 13440 6942 3669 1940
 1e- grad 5.3 2.3 1.2 0.7 0.4
 2e- grad 700 352 181 95 51
 ------ ------ ---- ---- ----
 total CPU 28, 15,605 8,066 4,268 2,265
 total wall 28,290 20,719 12,866 8,292 5,583

The first iteration is broken down into its primary steps
from the integral transformation to the orbital update,
inclusive. The SOSCF program is clearly faster, and should
be used when the number of processors is modest (say up to
8), however the largest molecules will benefit from using
more processors and the much more scalable FULLNR program.

 One should note that the CI calculation was more or less
serial here. This data comes from before the ALDET and
ORMAS codes were given a replicated memory parallization,
so scaling in the CI step should now be OK, to say 8 or 16
CPUs. However, these two CI code's use of replicated
memory in the CI step limits MCSCF scalability in the large
active space limit.

Programmer's Reference 5-20

 Now let's consider the second order pertubation
correction for this example. As noted, it is an excited
state, so the test corrects two states simultaneously (S0
and S1). The parallel multireference perturbation program
is described in
 H.Umeda, S.Koseki, U.Nagashima, M.W.Schmidt
 J.Comput.Chem. 22, 1243-1251 (2001)
The run is given the converged S1 orbitals, so that it can
skip directly to the perturbation calculation:
 p=1 p=2 p=4 p=8 p=16
 2e- ints 332 332 329 328 331
 MCQDPT 87921 43864 22008 11082 5697
 ----- ----- ----- ----- -----
 total CPU 88261 44205 22345 11418 6028
 total wall 91508 45818 23556 12350 6852
This corresponds to a speedup for 1->16 of 14.6.

 In summary, most ab initio computations will run in
less time on more than one processor. However, some things
can be run only on 1 CPU, namely
 semi-empirical runs
 RHF+CI gradient
 Coupled-Cluster calculations
Some steps run with little or no speedup, forming
sequential bottlenecks that limit scalability. They do not
prevent jobs from running in parallel, but restrict the
total number of processors that can be effectively used:
 ROHF/GVB hessians: solution of response equations
 MCSCF: Hamiltonian and 2e- density matrix (CI)
 energy localizations: the orbital localization step
 transition moments/spin-orbit: the final property step
 MCQDPT reference weight option
Future versions of GAMESS will address these bottlenecks.

 A short summary of the useful number of CPUs (based on
data like the above) would be
 RHF, ROHF, UHF, GVB energy/gradient, their
 DFT analogs, and CIS excited states 16-32+
 MCSCF energy/gradient
 SOSCF 4-8
 FULLNR 8-32+
 analytic hessians
 RHF 16-32+
 ROHF/GVB 4-8
 MCSCF 64-128+
 MPLEVL=2

Programmer's Reference 5-21

 RHF, UHF, ROHF OSPT=ZAPT 8-256+
 ROHF OSPT=RMP energy 8
 MCSCF 16+

Programmer's Reference 5-22

Altering program limits

 Almost all arrays in GAMESS are allocated dynamically,
but some variables must be held in common as their use is
ubiquitous. An example would be the common block /NSHEL/
which holds the ab initio atom's basis set. The following
Unix script, which we call 'mung' (see Wikipedia entry for
recursive acronyms), changes the PARAMETER statements that
set various limitations:

#!/bin/csh

automatically change GAMESS' built-in dimensions

chdir /u1/mike/gamess/source

foreach FILE (*.src)
 set FILE=$FILE:r
 echo ===== redimensioning in $FILE =====
 echo "C dd-mmm-yy - SELECT NEW DIMENSIONS" \
 > $FILE.munged
 sed -e "/MXATM=2000/s//MXATM=500/" \
 -e "/MXAO=8192/s//MXAO=2047/" \
 -e "/MXGSH=30/s//MXGSH=30/" \
 -e "/MXSH=5000/s//MXSH=1000/" \
 -e "/MXGTOT=20000/s//MXGTOT=5000/" \
 -e "/MXRT=100/s//MXRT=100/" \
 -e "/MXFRG=1050/s//MXFRG=65/" \
 -e "/MXDFG=5/s//MXDFG=1/" \
 -e "/MXPT=2000/s//MXPT=100/" \
 -e "/MXFGPT=12000/s//MXFGPT=2000/" \
 -e "/MXSP=500/s//MXSP=100/" \
 -e "/MXTS=20000/s//MXTS=2500/" \
 -e "/MXABC=6000/s//MXABC=1/" \
 $FILE.src >> $FILE.munged
 mv $FILE.munged $FILE.src
end
exit

 The script shows how to reduce memory, by decreasing
the number of atoms and basis functions, and reducing the
storage for the effective fragment and PCM solvent models.

 Of course, the 'mung' script can also be used to
increase the dimensions!

Programmer's Reference 5-23

 To fully turn off effective fragment storage, use
MXFRG=4, MXDFG=1, MXPT=8, MXFGPT=4. To fully turn off PCM
storage, use MXSP=1, MXTS=1. The parameters currently used
for GAMESS imply about 75 MBytes of storage tied up in
common blocks, which is not unreasonable, even in a laptop.
Reducing the storage size makes sense mainly on microkernel
type systems, without virtual memory managers.

In this script,
 MXATM = max number of ab initio atoms
 MXAO = max number of basis functions
 MXGSH = max number of Gaussians per shell
 MXSH = max number of symmetry unique shells
 MXGTOT= max number of symmetry unique Gaussians

 MXRT = max number of MCSCF/CI states

 MXFRG = max number of effective fragment potentials
 MXDFG = max number of different effective fragments
 MXPT = max number of points in any one term of any EFP
 MXFGPT= maximum storage for all EFPs, and is sized for
 a large number of EFPs with a small number of
 points (solvent applications), or a smaller
 number of EFPs with many points (biochemistry).

 MXSP = max number of spheres (sfera) in PCM
 MXTS = max number of tesserae in PCM

 MXABC = max number of A,B,C matrices in the COSMO
 algorithm. The default value of 6000 allows
 the construction of cavities for roughly 150
 to 200 atoms.

Programmer's Reference 5-24

Names of source code modules

 The source code for GAMESS is divided into a number of
sections, called modules, each of which does related
things, and is a handy size to edit. The following is a
list of the different modules, what they do, and notes on
their machine dependencies.

 machine
module description dependency
------- ------------------------- ----------
ALDECI Ames Lab determinant full CI code 1
ALGNCI Ames Lab determinant general CI code
BASCCN Dunning cc-pVxZ basis sets
BASECP SBKJC and HW valence basis sets
BASEXT DH, MC, 6-311G extended basis sets
BASG3L G3Large basis sets
BASHUZ Huzinaga MINI/MIDI basis sets to Xe
BASHZ2 Huzinaga MINI/MIDI basis sets Cs-Rn
BASKAR Karlsruhe (Ahlrichs) TZV basis sets
BASN21 N-21G basis sets
BASN31 N-31G basis sets
BASPCN Jensen polarization consistent basis sets
BASSTO STO-NG basis sets
BLAS level 1 basic linear algebra subprograms
CCAUX auxiliary routines for CC calculations
CCDDI parallel CCSD(T) program
CCQAUX auxiliaries for CCSD(TQ) program
CCQUAD renormalized CCSD(TQ) corrections
CCSDT renormalized CCSD(T) program 1
CEEIS corr. energy extrap. by intrinsic scaling
CEPA SR and MR-CEPA,AQCC,CPF calculations
CHGPEN screening for charge penetration of EFPs
CISGRD CI singles and its gradient 1
COSMO conductor-like screening model
COSPRT printing routine for COSMO
CPHF coupled perturbed Hartree-Fock 1
CPMCHF multiconfigurational CPHF 1
CPROHF open shell/TCSCF CPHF 1
DCCC divide and conquer coupled cluster
DCGRD divide and conquer gradients
DCGUES divide and conquer orbital guess
DCINT2 divide and conquer AO integrals 1
DCLIB divide and conquer library routines
DCMP2 divide and conquer MP2 1
DCSCF divide and conquer SCF
DCTRAN divide and conquer integral transf. 1

Programmer's Reference 5-25

DDILIB message passing library interface code
DELOCL delocalized coordinates
DEMRPT determinant-based MCQDPT
DFT grid-free DFT drivers 1
DFTAUX grid-free DFT auxiliary basis integrals
DFTDIS empirical dispersion correction to DFT
DFTFUN grid-free DFT functionals
DFTGRD grid DFT implementation
DFTINT grid-free DFT integrals 1
DFTXCA grid DFT functionals, hand coded
DFTXCB grid DFT functionals, from repository
DFTXCC grid DFT functionals for meta-GGA
DFTXCD grid DFT functionals B97, etc
DFTXCE grid DFT functionals for PKZB/TPSS family
DFTXCF grid DFT functionals for CAMB3LYPdir
DFTXCG grid DFT functional for revTPSS
DGEEV general matrix eigenvalue problem
DGESVD single value decomposition
DIAB MCSCF state diabatization
DMULTI Amos' distributed multipole analysis
DRC dynamic reaction coordinate
EAIPCC EA-EOM and IP-EOM method
ECP pseudopotential integrals
ECPDER pseudopotential derivative integrals
ECPLIB initialization code for ECP
ECPPOT HW and SBKJC internally stored potentials
EFCHTR fragment charge transfer
EFDRVR fragment only calculation drivers
EFELEC fragment-fragment interactions
EFGRD2 2e- integrals for EFP numerical hessian
EFGRDA ab initio/fragment gradient integrals
EFGRDB " " " " "
EFGRDC " " " " "
EFINP effective fragment potential input
EFINTA ab initio/fragment integrals
EFINTB " " " "
EFMO EFP + FMO interfacing
EFPAUL effective fragment Pauli repulsion
EFPCM EFP/PCM interfacing
EFPCOV EFP style QM/MM boundary code
EFPFMO FMO and EFP interface
EFTEI QM/EFP 2e- integrals 1
EIGEN Givens-Householder, Jacobi diagonalization
ELGLIB elongation method utility routines
ELGLOC elongation method orbital localization
ELGSCF elongation method Hartree-Fock 1
EOMCC equation of motion excited state CCSD
EWALD Ewald summations for EFP model
EXCORR interface to MPQC’s R12 programs

Programmer's Reference 5-26

FFIELD finite field polarizabilitie
FMO n-mer drivers for Fragment Molecular Orbital
FMOESD elestrostatic potential derivatives for FMO
FMOGRD gradient routines for FMO
FMOINT integrals for FMO
FMOIO input/output and printing for FMO
FMOLIB utilities for FMO
FMOPBC periodic boundary conditions for FMO
FMOPRP properties for FMO
FRFMT free format input scanner
FSODCI determinant based second order CI
G3 G3(MP2,CCSD(T)) thermochemistry
GAMESS main program, important driver routines
GLOBOP Monte Carlo fragment global optimizer
GMCPT general MCQDPT multireference PT code 1
GRADEX traces gradient extremals
GRD1 one electron gradient integrals
GRD2A two electron gradient integrals 1
GRD2B specialized sp gradient integrals
GRD2C general spdfg gradient integrals
GUESS initial orbital guess
GUGDGA Davidson CI diagonalization 1
GUGDGB " " " 1
GUGDM 1 particle density matrix
GUGDM2 2 particle density matrix 1
GUGDRT distinct row table generation
GUGEM GUGA method energy matrix formation 1
GUGSRT sort transformed integrals 1
GVB generalized valence bond HF-SCF 1
HESS hessian computation drivers
HSS1A one electron hessian integrals
HSS1B " " " "
HSS2A two electron hessian integrals 1
HSS2B " " " "
INPUTA read geometry, basis, symmetry, etc.
INPUTB " " " "
INPUTC " " " "
INT1 one electron integrals
INT2A two electron integrals (Rys) 1
INT2B two electron integrals (s,p,L rot.axis)
INT2C ERIC TEI code, and its s,p routines 11
INT2D ERIC special code for d TEI
INT2F ERIC special code for f TEI
INT2G ERIC special code for g TEI
INT2R s,p,d,L rotated axis integral package
INT2S s,p,d,L quadrature code
INT2T s,p,d,L quadrature code
INT2U s,p,d,L quadrature code
INT2V s,p,d,L quadrature code

Programmer's Reference 5-27

INT2W s,p,d,L quadrature code
INT2X s,p,d,L quadrature code
IOLIB input/output routines,etc. 2
IVOCAS improved virtual orbital CAS energy 1
LAGRAN CI Lagrangian matrix 1
LOCAL various localization methods 1
LOCCD LCD SCF localization analysis
LOCPOL LCD SCF polarizability analysis 1
LOCSVD singular value decomposition localization
LRD local response dispersion correction
LUT local unitary transformation IOTC
MCCAS FOCAS/SOSCF MCSCF calculation 1
MCJAC JACOBI MCSCF calculation
MCPGRD model core potential nuclear gradient
MCPINP model core potential input
MCPINT model core potential integrals
MCPL10 model core potential library
MCPL20 " " " "
MCPL30 " " " "
MCPL40 " " " "
MCPL50 " " " "
MCPL60 " " " "
MCPL70 " " " "
MCPL80 " " " "
MCQDPT multireference perturbation theory 1
MCQDWT weights for MR-perturbation theory
MCQUD QUAD MCSCF calculation 1
MCSCF FULLNR MCSCF calculation 1
MCTWO two electron terms for FULLNR MCSCF 1
MDEFP molecular dynamics using EFP particles
MEXING minimum energy crossing point search
MLTFMO multiscale solvation in FMO
MM23 MMCC(2,3) corrections to EOMCCSD
MOROKM Morokuma energy decomposition 1
MNSOL U.Minnesota solution models
MP2 2nd order Moller-Plesset 1
MP2DDI distributed data parallel MP2
MP2GRD CPHF and density for MP2 gradients 1
MP2GR2 disk based MP2 gradient program
MP2IMS disk based MP2 energy program
MPCDAT MOPAC parameterization
MPCGRD MOPAC gradient
MPCINT MOPAC integrals
MPCMOL MOPAC molecule setup
MPCMSC miscellaneous MOPAC routines
MTHLIB printout, matrix math utilities
NAMEIO namelist I/O simulator
NEOSTB dummy routines for NEO program
NMR nuclear magnetic resonance shifts 1

Programmer's Reference 5-28

ORDINT sort atomic integrals 1
ORMAS1 occ. restricted multiple act. space CI
PARLEY communicate to other programs
PCM Polarizable Continuum Model setup
PCMCAV PCM cavity creation
PCMCV2 PCM cavity for gradients
PCMDER PCM gradients
PCMDIS PCM dispersion energy
PCMIEF PCM integral equation formalism
PCMPOL PCM polarizabilities
PCMVCH PCM repulsion and escaped charge
PRMAMM atomic multipole moment expansion
PRPEL electrostatic properties
PRPLIB miscellaneous properties
PRPPOP population properties
QEIGEN 128 bit precision RI for relativity 11
QFMM quantum fast multipole method
QMFM additional QFMM code
QMMM dummy routines for Tinker/SIMOMM program
QREL relativistic transformations
QUANPO Quantum Chem Polarizable force field
RAMAN Raman intensity
RHFUHF RHF, UHF, and ROHF HF-SCF 1
ROHFCC open shell CC computations 1
RXNCRD intrinsic reaction coordinate
RYSPOL roots for Rys polynomials
SCFLIB HF-SCF utility routines, DIIS code
SCFMI molecular interaction SCF code
SCRF self consistent reaction field
SOBRT full Breit-Pauli spin-orbit compling
SOFFAC spin-orbit matrix element form factors
SOLIB spin-orbit library routines
SOZEFF 1e- spin-orbit coupling terms
STATPT geometry and transition state finder
SURF PES scanning
SVPCHG surface volume polarization (SS(V)PE)
SVPINP input/output routines for SS(V)PE
SVPLEB Lebedev grids for SS(V)PE integration
SYMORB orbital symmetry assignment
SYMSLC " " "
TDDEFP EFP solvent effects on TD-DFT
TDDFT time-dependent DFT excitations
TDDFUN functionals for TD-DFT
TDDFXC exchange-corr. grid pts. for TD-DFT
TDDGRD gradient code for TD-DFT
TDDINT integral terms for TD-DFT 1
TDDNLR non-linear (two photon) TD-DFT
TDDXCA TD-DFT functional derivatives
TDDXCC TD-DFT functional derivatives

Programmer's Reference 5-29

TDDXCD TD-DFT functional der. for metaGGA
TDHF time-dependent Hartree-Fock polarzblity 1
TDX extended time-dependent RHF
TDXIO input/output for extended TDHF
TDXITR iterative procedures in extended TDHF
TDXNI non-iterative tasks in extended TDHF
TDXPRP properties from extended TDHF
TRANS partial integral transformation 1
TRFDM2 two particle density backtransform 1
TRNSTN CI transition moments
TRUDGE nongradient optimization
UMPDDI distributed data parallel MP2
UNPORT unportable, nasty code 3,4,5,6,7,8
UTDDFT unrestricted TD-DFT 1
VBDUM dummy routines for VB programs
VECTOR vectorized version routines 10
VIBANL normal coordinate analysis
VSCF anharmonic frequencies
VVOS valence virtual orbitals
ZAPDDI distrib. data ZAPT2 open shell PT gradient
ZHEEV complex matrix diagonalization
ZMATRX internal coordinates

UNIX versions use the C code ZUNIX.C for dynamic memory.

 The machine dependencies noted above are:
1) packing/unpacking 2) OPEN/CLOSE statments
3) machine specification 4) fix total dynamic memory
5) subroutine walkback 6) error handling calls
7) timing calls 8) LOGAND function
10) vector library calls 11) REAL*16 data type

Note that the message passing support (DDI) for GAMESS is
implemented in C (for most machines), and is stored in a
separate subdirectory. Please see the ~/games/ddi tree for
more information about the Distributed Data Interface's
code and usage.

Programmer's Reference 5-30

Programming Conventions

 The following "rules" should be adhered
 to in making changes in GAMESS. These
 rules are important in maintaining
 portability, and should be adhered to.

 The following rule is so important that it is not given
a number,

 The Golden Rule: make sure your code not only has no
compiler diagnostics (try as many compilers as possible),
but that it also has no FTNCHEK diagnostics. The FTNCHEK
program of Robert Moniot is a fantastic debugging tool, and
results in the great portability of GAMESS. You can learn
how to get FTNCHEK, and how to use it from the script
 ~/gamess/tools/checkgms

 Rule 1. If there is a way to do it that works on all
computers, do it that way. Commenting out statements for
the different types of computers should be your last
resort. If it is necessary to add lines specific to your
computer, PUT IN CODE FOR ALL OTHER SUPPORTED MACHINES.
Even if you don't have access to all the types of supported
hardware, you can look at the other machine specific
examples found in GAMESS, or ask for help from someone who
does understand the various machines. If a module does not
already contain some machine specific statements (see the
above list) be especially reluctant to introduce
dependencies.

 Rule 2. Write a double precision program, and let the
source activator handle any conversion to single precision,
when that is necessary:
 a) Use IMPLICIT DOUBLE PRECISION(A-H,O-Z) specification
statements throughout. Not REAL*8. Integer type should be
just INTEGER, so that compiler flags can select 64 or 32
bit integers at compile time.
 b) All floating point constants should be entered as if
they were in double precision, in a format that the souce
code activator can recognize as being uniquely a number.
Namely, the constants should contain a decimal point, a
number after the decimal, and a signed, two digit exponent.
A legal constant is 1.234D-02. Illegal examples are 1D+00,
5.0E+00, 3.0D-2. Check for illegals by
 grep "[0-9][DE][0-9]" *.src
 grep "[0-9][.]D" *.src

Programmer's Reference 5-31

 grep "[0-9][.][0-9][DE][0-9]" *.src
 grep "[0-9][DE][+-][1-9][^0-9]" *.src
 c) Double precision BLAS names are used throughout, for
example DDOT instead of SDOT, and DGEMM instead of SGEMM.

 The source code activator ACTVTE will
 automatically convert these double
 precision constructs into the correct
 single precision expressions for machines
 that have 64 rather than 32 bit words.

 Rule 3. FORTRAN 77 allows for generic functions. Thus
the routine SQRT should be used in place of DSQRT, as this
will automatically be given the correct precision by the
compilers. Use ABS, COS, INT, etc. Your compiler manual
will tell you all the generic names.

 Rule 4. Every routine in GAMESS begins with a card
containing the name of the module and the routine. An
example is "C*MODULE xxxxxx *DECK yyyyyy". The second
star is in column 18. Here, xxxxxx is the name of the
module, and yyyyyy is the name of the routine. This rule
is designed to make it easier for a person completely
unfamiliar with GAMESS to find routines.

 Rule 5. Whenever a change is made to a module, this
should be recorded at the top of the module. The
information required is the date, initials of the person
making the change, and a terse summary of the change.

 Rule 6. No imbedded tabs, statements must lie between
columns 7 and 72, etc. In other words, old style syntax.

 * * *

 The next few "rules" are not adhered to
 in all sections of GAMESS. Nonetheless
 they should be followed as much as
 possible, whether you are writing new
 code, or modifying an old section.

 Rule 7. Stick to the FORTRAN naming convention for
integer (I-N) and floating point variables (A-H,O-Z). If
you've ever worked with a program that didn't obey this,
you'll understand why.

 Rule 8. Always use a dynamic memory allocation routine
that calls the real routine. A good name for the memory

Programmer's Reference 5-32

routine is to replace the last letter of the real routine
with the letter M for memory.

 Rule 9. All the usual good programming techniques,
such as indented DO loops ending on CONTINUEs, IF-THEN-ELSE
where this is clearer, 3 digit statement labels in
ascending order, no three branch GO TO's, descriptive
variable names, 4 digit FORMATs, etc, etc.

 The next set of rules relates to coding
 practices which are necessary for the
 parallel version of GAMESS to function
 sensibly. They must be followed without
 exception!

 Rule 10. All open, rewind, and close operations on
sequential files must be performed with the subroutines
SEQOPN, SEQREW, and SEQCLO respectively. You can find
these routines in IOLIB, they are easy to use. SQREAD,
SQWRIT, and various integral I/O routines like PREAD are
used to process the contents of such files. The variable
DSKWRK tells if you are processing a distributed file (one
split between all compute processes, DSKWRK=.TRUE.) or a
single file on the master process (DSKWRK=.FALSE.,
resulting in broadcasts of the data from the master to all
other CPUs).

 Rule 11. All READ and WRITE statements for the
formatted files 5, 6, 7 (variables IR, IW, IP, or named
files INPUT, OUTPUT, PUNCH) must be performed only by the
master task. Therefore, these statements must be enclosed
in "IF (MASWRK) THEN" clauses. The MASWRK variable is
found in the /PAR/ common block, and is true on the master
process only. This avoids duplicate output from the other
processes.

 Rule 12. All error termination is done by "CALL ABRT"
rather than a STOP statement. Since this subroutine never
returns, it is OK to follow it with a STOP statement, as
compilers may not be happy without a STOP as the final
executable statment in a routine. The purpose of calling
ABRT is to make sure that all parallel tasks get shut down
properly.

Programmer's Reference 5-33

Parallel broadcast identifiers

 GAMESS uses DDI calls to pass messages between the
parallel processes. Every message is identified by a
unique number, hence the following list of how the numbers
are used at present. If you need to add to these, look at
the existing code and use the following numbers as
guidelines to make your decision. All broadcast numbers
must be between 1 and 32767.

 20 : Parallel timing
 100 - 199 : DICTNRY file reads
 200 - 204 : Restart info from the DICTNRY file
 210 - 214 : Pread
 220 - 224 : PKread
 225 : RAread
 230 : SQread
 250 - 265 : Nameio
 275 - 310 : Free format
 325 - 329 : $PROP group input
 350 - 354 : $VEC group input
 400 - 424 : $GRAD group input
 425 - 449 : $HESS group input
 450 - 474 : $DIPDR group input
 475 - 499 : $VIB group input
 500 - 599 : matrix utility routines
 800 - 830 : Orbital symmetry
 900 : ECP 1e- integrals
 910 : 1e- integrals
 920 - 975 : EFP and SCRF integrals
 980 - 999 : property integrals
 1000 - 1025 : SCF wavefunctions
 1030 - 1041 : broadcasts in DFT
 1050 : Coulomb integrals
 1200 - 1215 : MP2
 1300 - 1320 : localization
 1495 - 1499 : reserved for Jim Shoemaker
 1500 : One-electron gradients
 1505 - 1599 : EFP and SCRF gradients
 1600 - 1602 : Two-electron gradients
 1605 - 1620 : One-electron hessians
 1650 - 1665 : Two-electron hessians
 1700 - 1750 : integral transformation
 1800 : GUGA sorting
 1850 - 1865 : GUGA CI diagonalization
 1900 - 1910 : GUGA DM2 generation
 2000 - 2010 : MCSCF

Programmer's Reference 5-34

 2100 - 2120 : coupled perturbed HF
 2150 - 2200 : MCSCF hessian
 2300 - 2309 : spin-orbit jobs

Programmer's Reference 5-35

Disk files used by GAMESS

 These files must be defined by your control language in
order to execute GAMESS. For example, on UNIX the "name"
field shown below should be set in the environment to the
actual file name to be used. Most runs will open only a
subset of the files shown below, with only files 5, 6, 7,
and 10 used by every run. Files 1, 2, 3 (both), 4, 5, 6,
7, and 35 contain formatted data, while all others are
binary (unformatted) files. Files ERICFMT, EXTBAS, and
MCPPATH are used to read data into GAMESS. Files MAKEFP,
TRAJECT, RESTART, and PUNCH are supplemental output files,
containing more concise summaries than the log file for
certain kinds of data.

unit name contents
---- ---- --------
 1 MAKEFP effective fragment potential from MAKEFP run

 2 ERICFMT Fm(t) interpolation table data, a data file
 named ericfmt.dat, supplied with GAMESS.

 3 MCPPATH a directory of model core potentials and
 associated basis sets, supplied with GAMESS

 3 EXTBAS external basis set library (user supplied)

 3 GAMMA 3rd nuclear derivatives

 4 TRAJECT trajectory results for IRC, DRC, or MD runs.
 summary of results for RUNTYP=GLOBOP.

35 RESTART restart data for numerical HESSIAN runs,
 numerical gradients, or for RUNTYP=VSCF.
 Used as a scratch unit during MAKEFP.

 5 INPUT Namelist input file. This MUST be a disk
 file, as GAMESS rewinds this file often.

 6 OUTPUT Print output (main log file).
 If not defined, UNIX systems will use the
 file "standard output" for this.

 7 PUNCH Punch output. A copy of the $DATA deck,
 orbitals for every geometry calculated,
 hessian matrix, normal modes from FORCE,
 properties output, etc. etc. etc.

Programmer's Reference 5-36

 8 AOINTS Two e- integrals in AO basis

 9 MOINTS Two e- integrals in MO basis

10 DICTNRY Master dictionary, for contents see below.

11 DRTFILE Distinct row table file for -CI- or -MCSCF-

12 CIVECTR Eigenvector file for -CI- or -MCSCF-

13 CASINTS semi-transformed ints for FOCAS/SOSCF MCSCF
 scratch file during spin-orbit coupling

14 CIINTS Sorted integrals for -CI- or -MCSCF-

15 WORK15 GUGA loops for Hamiltonian diagonal;
 ordered two body density matrix for MCSCF;
 scratch storage during GUGA Davidson diag;
 Hessian update info during 2nd order SCF;
 [ij|ab] integrals during MP2 gradient
 density matrices during determinant CI

16 WORK16 GUGA loops for Hamiltonian off-diagonal;
 unordered GUGA DM2 matrix for MCSCF;
 orbital hessian during MCSCF;
 orbital hessian for analytic hessian CPHF;
 orbital hessian during MP2 gradient CPHF;
 two body density during MP2 gradient

17 CSFSAVE CSF data for state to state transition runs.

18 FOCKDER derivative Fock matrices for analytic hess

19 WORK19 used during CP-MCHF response equations

20 DASORT Sort file for various -MCSCF- or -CI- steps;
 also used by SCF level DIIS

21 DFTINTS four center overlap ints for grid-free DFT

21 DIABDAT density/CI info during MCSCF diabatization

22 DFTGRID mesh information for grid DFT

23 JKFILE shell J, K, and Fock matrices for -GVB-;
 Hessian update info during SOSCF MCSCF;
 orbital gradient and hessian for QUAD MCSCF

Programmer's Reference 5-37

24 ORDINT sorted AO integrals;
 integral subsets during Morokuma analysis

25 EFPIND electric field integrals for EFP

26 PCMDATA gradient and D-inverse data for PCM runs

27 PCMINTS normal projections of PCM field gradients

26 SVPWRK1 conjugate gradient solver for SV(P)SE

27 SVPWRK2 conjugate gradient solver for SV(P)SE

26 COSCAV scratch file for COSMO's solvent cavity

27 COSDATA output file to process by COSMO-RS program

27 COSPOT DCOSMO input file, from COSMO-RS program

28 MLTPL QMFM file, no longer used

29 MLTPLT QMFM file, no longer used

30 DAFL30 direct access file for FOCAS MCSCF's DIIS,
 direct access file for NEO's nuclear DIIS,
 direct access file for DC's DIIS.
 form factor sorting for Breit spin-orbit

31 SOINTX Lx 2e- integrals during spin-orbit

32 SOINTY Ly 2e- integrals during spin-orbit

33 SOINTZ Lz 2e- integrals during spin-orbit

34 SORESC RESC symmetrization of SO ints

35 RESTART documented at the beginning of this list

37 GCILIST determinant list for general CI program

38 HESSIAN hessian for FMO optimisations;
 gradient for FMO with restarts

39 QMMTEI reserved for future use

40 SOCCDAT CSF list for SOC;
 fragment densities/orbitals for FMO

41 AABB41 aabb spinor [ia|jb] integrals during UMP2

Programmer's Reference 5-38

42 BBAA42 bbaa spinor [ia|jb] integrals during UMP2

43 BBBB43 bbbb spinor [ia|jb] integrals during UMP2

44 REMD replica exchange molecular dynamics data

45 UNV LUT-IOTC's unitary transf. of V ints

46 UNPV LUT-IOTC's unitary transf. of pVp ints

 files 50-63 are used for MCQDPT runs.
 files 50-54 are also used by CODE=IMS MP2 runs.

unit name contents
---- ---- --------
50 MCQD50 Direct access file for MCQDPT, its
 contents are documented in source code.
51 MCQD51 One-body coupling constants <I/Eij/J> for
 CAS-CI and other routines
52 MCQD52 One-body coupling constants for perturb.
53 MCQD53 One-body coupling constants extracted
 from MCQD52
54 MCQD54 One-body coupling constants extracted
 further from MCQD52
55 MCQD55 Sorted 2e- AO integrals
56 MCQD56 Half transformed 2e- integrals
57 MCQD57 transformed 2e- integrals of (ii|ii) type
58 MCQD58 transformed 2e- integrals of (ei|ii) type
59 MCQD59 transformed 2e- integrals of (ei|ei) type
60 MCQD60 2e- integral in MO basis arranged for
 perturbation calculations
61 MCQD61 One-body coupling constants between state
 and CSF <Alpha/Eij/J>
62 MCQD62 Two-body coupling constants between state
 and CSF <Alpha/Eij,kl/J>
63 MCQD63 canonical Fock orbitals (FORMATTED)
64 MCQD64 Spin functions and orbital configuration
 functions (FORMATTED)

unit name contents
---- ---- --------
 for RI-MP2 calculations only
51 RIVMAT 2c-2e inverse matrix
52 RIT2A 2nd index transformation data
53 RIT3A 3rd index transformation data
54 RIT2B 2nd index data for beta orbitals of UMP2

Programmer's Reference 5-39

55 RIT3B 3rd index data for beta orbitals of UMP2

unit name contents
---- ---- --------
 for RUNTYP=NMR only
61 NMRINT1 derivative integrals for NMR
62 NMRINT2 " " " "
63 NMRINT3 " " " "
64 NMRINT4 " " " "
65 NMRINT5 " " " "
66 NMRINT6 " " " "
 for RUNTYP=MAKEFP (or dynamic polarizability run)
67 DCPHFH2 magnetic hessian in dynamic polarizability
68 DCPHF21 magnetic hessian times electronic hessian
 for NEO runs, only (DAFL30 has nuclear DIIS)
67 ELNUINT electron-nucleus AO integrals
68 NUNUINT nucleus-nucleus AO integrals
69 NUMOIN nucleus-nucleus MO integrals
70 NUMOCAS nucleus-nucleus half transformed integrals
71 NUELMO nucleus-electron MO integrals
72 NUELCAS nucleus-electron half transformed integrals
 for elongation method, only
70 ELGDOS elongation density of states
71 ELGDAT elongation frozen/active region data
72 ELGPAR elongation geometry optimization info
74 ELGCUT elongation cutoff information
75 ELGVEC elongation localized orbitals
77 ELINTA elongation 2e- for cut-off part
78 EGINTB elongation 2e- for next elongation
79 EGTDHF elongation TDHF (future use)
80 EGTEST elongation test file
99 PT2INT integrals for MPQC’s PT2 R-12 correction
99 PT2RDM 2 particle reduced density for MPQC’s R-12
99 PT2BAS geom/basis/orbs for MPQC’s R-12 correction

 files 70-98 are used for closed shell Coupled-Cluster,
 all of these are direct access files.

unit name contents
---- ---- --------
70 CCREST T1 and T2 amplitudes for restarting
71 CCDIIS amplitude converger's scratch data
72 CCINTS MO integrals sorted by classes
73 CCT1AMP T1 amplitudes and some No*Nu intermediates
 for MMCC(2,3)
74 CCT2AMP T2 amplitudes and some No**2 times Nu**2
 intermediates for MMCC(2,3)
75 CCT3AMP M3 moments

Programmer's Reference 5-40

76 CCVM No**3 times Nu - type main intermediate
77 CCVE No times Nu**3 - type main intermediate
78 CCAUADS Nu**3 times No intermediates for (TQ)
79 QUADSVO No*Nu**2 times No intermediates for (TQ)
80 EOMSTAR initial vectors for EOMCCSD calculations
81 EOMVEC1 iterative space for R1 components
82 EOMVEC2 iterative space for R2 components
83 EOMHC1 singly excited components of H-bar*R
84 EOMHC2 doubly excited components of H-bar*R
85 EOMHHHH intermediate used by EOMCCSD
86 EOMPPPP intermediate used by EOMCCSD
87 EOMRAMP converged EOMCCSD right (R) amplitudes
88 EOMRTMP converged EOMCCSD amplitudes for MEOM=2
 (if the max. no. of iterations exceeded)
89 EOMDG12 diagonal part of H-bar
90 MMPP diagonal parts for triples-triples H-bar
91 MMHPP diagonal parts for triples-triples H-bar
92 MMCIVEC Converged CISD vectors
93 MMCIVC1 Converged CISD vectors for mci=2
 (if the max. no. of iterations exceeded)
94 MMCIITR Iterative space in CISD calculations
95 EOMVL1 iterative space for L1 components
96 EOMVL2 iterative space for L2 components
97 EOMLVEC converged EOMCCSD left eigenvectors
98 EOMHL1 singly excited components of L*H-bar
99 EOMHL2 doubly excited components of L*H-bar

the next group of files (70-95) is for open shell CC:

unit name contents
---- ---- --------
70 AMPROCC restart info CCSD/Lambda eq./EA-EOM/IP-EOM
71 ITOPNCC working copy of the same information
72 FOCKMTX subsets of F-alpha and F-beta matrices
73 LAMB23 data during CC(2,3) step
74 VHHAA [i,k|j,l]-[i,l|j,k] alpha/alpha
75 VHHBB [i,k|j,l]-[i,l|j,k] beta/beta
76 VHHAB [i,k|j,l] alpha/beta
77 VMAA [j,l|k,a]-[j,a|k,l] alpha/alpha
78 VMBB [j,l|k,a]-[j,a|k,l] beta/beta
79 VMAB [j,l|k,a] alpha/beta
80 VMBA [j,l|k,a] beta/alpha
81 VHPRAA [a,j|c,l]-[a,l|c,j] alpha/alpha
82 VHPRBB [a,j|c,l]-[a,l|c,j] beta/beta
83 VHPRAB [a,j|b,l] alpha/beta
84 VHPLAA [a,b|k,l]-[a,l|b,k] alpha/alpha
85 VHPLBB [a,b|k,l]-[a,l|b,k] beta/beta
86 VHPLAB [a,b|k,l] alpha/beta
87 VHPLBA [a,b|k,l] beta/alpha

Programmer's Reference 5-41

88 VEAA [a,b|c,l]-[a,l|b,c] alpha/alpha
89 VEBB [a,b|c,l]-[a,l|b,c] beta/beta
90 VEAB [a,j|c,d] alpha/beta
91 VEBA [a,j|c,d] beta/alpha
92 VPPPP all four virtual integrals
93 INTERM1 one H-bar, some two H-bar, etc.
94 INTERM2 some two H-bar, etc.
95 INTERM3 remaining two H-bar intermediates
96 ITSPACE iterative subspace data for EA-EOM/IP-EOM
97 INSTART initial guesses for EA-EOM or IP-EOM runs
98 ITSPC3 triples iterative data for EA-EOM

unit name contents
---- ---- --------
 files 201-239 may be used by RUNTYP=TDHFX
201 OLI201...running consecutively up to
239 OLI239
 files 250-257 are used by divide-and-conquer runs
 file 30 is used for the DC-DIIS data
250 DCSUB subsystem atoms (central and buffer)
251 DCVEC subsystem orbitals
252 DCEIG subsystem eigenvalues
253 DCDM subsystem density matrices
254 DCDMO old subsystem density matrices
255 DCQ subsystem Q matrices
256 DCW subsystem orbital weights
257 DCEDM subsystem energy-weighted density matrices
 files 297-299 are used by hyperpolarizability analysis
297 LHYPWRK preordered LMOs
298 LHYPKW2 reassigned LMOs
299 BONDDPF bond dipoles with electric fields

Unit 301 is used for direct access using an internally
assigned filename during divide and conquer MP2 runs.

disk files in parallel runs

When a file is opened by the master compute process (which
is rank 0), its name is that defined by the 'setenv'. On
other processes (ranks 1 up to p-1, where p is the number
of running processes), the rank 'nnn' is appended to the
file name, turning the name xxx.Fyy into xxx.Fyy.nnn. The
number of digits in nnn is adjusted according to the total
number of processes started. Thus the common situation of
a SMP node sharing a single disk for several processes, on
up to the case of a machine like the Cray XT having only

Programmer's Reference 5-42

one disk partition for all nodes does not lead to file name
conflicts.

By the way, only the master process needs to read the
environment to learn file names: these names are sent as
network messages to the other processes.

When DDI subgroups are not in use, the variable DSKWRK (in
common /par/) defines the strategy. A large file like 2e-
AO integrals (AOINTS) is computed as several smaller files,
which taken together have all the integrals. When all
processes are supposed to process files private to each
process, DSKWRK is .TRUE., and every process has a file,
usually containing different values. For smaller data,
such as CI vectors, where all processes want to store
exactly the same data, only the master process needs to
maintain the file. This situation is DSKWRK=.FALSE. When
the data is to be recovered from disk, only the master
process reads the disk, after which, the data is sent as a
broadcast message to all other processes. The special file
DICTNRY is always processed in this second way, so data
recovered from it is the same (to the least significant
bits) on every process. Another example of a file read by
only one process is the run's INPUT file.

If DDI subgroups are used, DSKWRK is ignored, and every
process opens every file. These are often left empty,
except on the master process in each subgroup. The input
file (INPUT) is exempt from having the rank added to its
name, so that a machine with a common file system can have
all processes read from the same input file. If the groups
have different disks, the INPUT must be copied to the
master process of every group: a simple way to ensure that
is to copy INPUT to every node's work disk. Similarly, the
OUTPUT file (and a few other files like PUNCH) are written
by every group master. If the run goes badly, these extra
output files may be interesting, but most of the time the
OUTPUT from the master of the first subgroup has enough
information. The OUTPUT of non-group-masters is not very
interesting.

The DICTNRY file is also treated in a special way when
running in groups, and that should be described here.

Programmer's Reference 5-43

Contents of the direct access file 'DICTNRY'

 1. Atomic coordinates
 2. various energy quantities in /ENRGYS/
 3. Gradient vector
 4. Hessian (force constant) matrix
 5-6. not used
 7. PTR - symmetry transformation for p orbitals
 8. DTR - symmetry transformation for d orbitals
 9. FTR - symmetry transformation for f orbitals
 10. GTR - symmetry transformation for g orbitals
 11. Bare nucleus Hamiltonian integrals
 12. Overlap integrals
 13. Kinetic energy integrals
 14. Alpha Fock matrix (current)
 15. Alpha orbitals
 16. Alpha density matrix
 17. Alpha energies or occupation numbers
 18. Beta Fock matrix (current)
 19. Beta orbitals
 20. Beta density matrix
 21. Beta energies or occupation numbers
 22. Error function interpolation table
 23. Old alpha Fock matrix
 24. Older alpha Fock matrix
 25. Oldest alpha Fock matrix
 26. Old beta Fock matrix
 27. Older beta Fock matrix
 28. Oldest beta Fock matrix
 29. Vib 0 gradient in FORCE (numerical hessian)
 30. Vib 0 alpha orbitals in FORCE
 31. Vib 0 beta orbitals in FORCE
 32. Vib 0 alpha density matrix in FORCE
 33. Vib 0 beta density matrix in FORCE
 34. dipole derivative tensor in FORCE.
 35. frozen core Fock operator, in AO basis
 36. RHF/UHF/ROHF Lagrangian (see 402-404)
 37. floating point part of common block /OPTGRD/
int 38. integer part of common block /OPTGRD/
 39. ZMAT of input internal coords
int 40. IZMAT of input internal coords
 41. B matrix of redundant internal coords
 42. pristine core Fock matrix in MO basis (see 87)
 43. Force constant matrix in internal coordinates.
 44. SALC transformation
 45. symmetry adapted Q matrix
 46. S matrix for symmetry coordinates

Programmer's Reference 5-44

 47. ZMAT for symmetry internal coords
int 48. IZMAT for symmetry internal coords
 49. B matrix
 50. B inverse matrix
 51. overlap matrix in Lowdin basis,
 temp Fock matrix storage for ROHF
 52. genuine MOPAC overlap matrix
 53. MOPAC repulsion integrals
 54. exchange integrals for screening
 55. orbital gradient during SOSCF MCSCF
 56. orbital displacement during SOSCF MCSCF
 57. orbital hessian during SOSCF MCSCF
 58. reserved for Pradipta
 59. Coulomb integrals in Ruedenberg localizations
 60. exchange integrals in Ruedenberg localizations
 61. temp MO storage for GVB and ROHF-MP2
 62. temp density for GVB
 63. dS/dx matrix for hessians
 64. dS/dy matrix for hessians
 65. dS/dz matrix for hessians
 66. derivative hamiltonian for OS-TCSCF hessians
 67. partially formed EG and EH for hessians
 68. MCSCF first order density in MO basis
 69. alpha Lowdin populations
 70. beta Lowdin populations
 71. alpha orbitals during localization
 72. beta orbitals during localization
 73. alpha localization transformation
 74. beta localization transformation
 75. fitted EFP interfragment repulsion values
 76. model core potential information
 77. model core potential information
 78. "Erep derivative" matrix associated with F-a terms
 79. "Erep derivative" matrix associated with S-a terms
 80. EFP 1-e Fock matrix including induced dipole terms
 81. interfragment dispersion values
 82. MO-based Fock matrix without any EFP contributions
 83. LMO centroids of charge
 84. d/dx dipole velocity integrals
 85. d/dy dipole velocity integrals
 86. d/dz dipole velocity integrals
 87. unmodified h matrix during SCRF or EFP, AO basis
 88. PCM solvent operator contribution to Fock
 89. EFP multipole contribution to one e- Fock matrix
 90. ECP coefficients
int 91. ECP labels
 92. ECP coefficients
int 93. ECP labels
 94. bare nucleus Hamiltonian during FFIELD runs

Programmer's Reference 5-45

 95. x dipole integrals, in AO basis
 96. y dipole integrals, in AO basis
 97. z dipole integrals, in AO basis
 98. former coords for Schlegel geometry search
 99. former gradients for Schlegel geometry search
 100. dispersion contribution to EFP gradient

 records 101-248 are used for NLO properties

101. U'x(0) 149. U''xx(-2w;w,w) 200. UM''xx(-w;w,0)
102. y 150. xy 201. xy
103. z 151. xz 202. xz
104. G'x(0) 152. yy 203. yz
105. y 153. yz 204. yy
106. z 154. zz 205. yz
107. U'x(w) 155. G''xx(-2w;w,w) 206. zx
108. y 156. xy 207. zy
109. z 157. xz 208. zz
110. G'x(w) 158. yy 209. U''xx(0;w,-w)
111. y 159. yz 210. xy
112. z 160. zz 211. xz
113. U'x(2w) 161. e''xx(-2w;w,w) 212. yz
114. y 162. xy 213. yy
115. z 163. xz 214. yz
116. G'x(2w) 164. yy 215. zx
117. y 165. yz 216. zy
118. z 166. zz 217. zz
119. U'x(3w) 167. UM''xx(-2w;w,w) 218. G''xx(0;w,-w)
120. y 168. xy 219. xy
121. z 169. xz 220. xz
122. G'x(3w) 170. yy 221. yz
123. y 171. yz 222. yy
124. z 172. zz 223. yz
125. U''xx(0) 173. U''xx(-w;w,0) 224. zx
126. xy 174. xy 225. zy
127. xz 175. xz 226. zz
128. yy 176. yz 227. e''xx(0;w,-w)
129. yz 177. yy 228. xy
130. zz 178. yz 229. xz
131. G''xx(0) 179. zx 230. yz
132. xy 180. zy 231. yy
133. xz 181. zz 232. yz
134. yy 182. G''xx(-w;w,0) 233. zx
135. yz 183. xy 234. zy
136. zz 184. xz 235. zz
137. e''xx(0) 185. yz 236. UM''xx(0;w,-w)
138. xy 186. yy 237. xy
139. xz 187. yz 238. xz
140. yy 188. zx 239. yz

Programmer's Reference 5-46

141. yz 189. zy 240. yy
142. zz 190. zz 241. yz
143. UM''xx(0) 191. e''xx(-w;w,0) 242. zx
144. xy 192. xy 243. zy
145. xz 193. xz 244. zz
146. yy 194. yz
147. yz 195. yy
148. zz 196. yz
 197. zx
 198. zy
 199. zz

 245. old NLO Fock matrix
 246. older NLO Fock matrix
 247. oldest NLO Fock matrix
 249. polarizability derivative tensor for Raman
 250. transition density matrix in AO basis
 251. static polarizability tensor alpha
 252. X dipole integrals in MO basis
 253. Y dipole integrals in MO basis
 254. Z dipole integrals in MO basis
 255. alpha MO symmetry labels
 256. beta MO symmetry labels
 257. dipole polarization integrals during EFP1
 258. Vnn gradient during MCSCF hessian
 259. core Hamiltonian from der.ints in MCSCF hessian
260-261. reserved for Dan
 262. MO symmetry integers during determinant CI
 263. PCM nuclei/induced nuclear Charge operator
 264. PCM electron/induced nuclear Charge operator
 265. pristine alpha guess (MOREAD or Huckel+INSORB)
 266. EFP/PCM IFR sphere information
 267. fragment LMO expansions, for EFP Pauli
 268. fragment Fock operators, for EFP Pauli
 269. fragment CMO expansions, for EFP charge transfer
 270. reserved for non-orthogonal FMO dimer guess
 271. orbital density matrix in divide and conquer
int 272. subsystem data during divide and conquer
 273. old alpha Fock matrix for D&C Anderson-like DIIS
 274. old beta Fock matrix for D&C Anderson-like DIIS
 275. not used
 276. Vib 0 Q matrix in FORCE
 277. Vib 0 h integrals in FORCE
 278. Vib 0 S integrals in FORCE
 279. Vib 0 T integrals in FORCE
 280. Zero field LMOs during numerical polarizability
 281. Alpha zero field dens. during num. polarizability
 282. Beta zero field dens. during num. polarizability
 283. zero field Fock matrix. during num. polarizability

Programmer's Reference 5-47

 284. Fock eigenvalues for multireference PT
 285. density matrix or Fock matrix over LMOs
 286. oriented localized molecular orbitals
 287. density matrix of oriented LMOs
 288. DM1 during CEPA-style calculations
 289. DM2 during CEPA-style calculations
 290. pristine (gas phase) h during solvent runs
 291. "repulsion" integrals during EFP1
292-299. not used
 301. Pocc during MP2 (RHF or ZAPT) or CIS grad
 302. Pvir during MP2 gradient (UMP2= 411-429)
 303. Wai during MP2 gradient
 304. Lagrangian Lai during MP2 gradient
 305. Wocc during MP2 gradient
 306. Wvir during MP2 gradient
 307. P(MP2/CIS)-P(RHF) during MP2 or CIS gradient
 308. SCF density during MP2 or CIS gradient
 309. energy weighted density in MP2 or CIS gradient
 311. Supermolecule h during Morokuma
 312. Supermolecule S during Morokuma
 313. Monomer 1 orbitals during Morokuma
 314. Monomer 2 orbitals during Morokuma
 315. combined monomer orbitals during Morokuma
 316. RHF density in CI grad; nonorthog. MOs in SCF-MI
 317. unzeroed Fock matrix when MOs are frozen
 318. MOREAD orbitals when MOs are frozen
 319. bare Hamiltonian without EFP contribution
 320. MCSCF active orbital density
 321. MCSCF DIIS error matrix
 322. MCSCF orbital rotation indices
 323. Hamiltonian matrix during QUAD MCSCF
 324. MO symmetry labels during MCSCF
 325. final uncanonicalized MCSCF orbitals
326-329. not used
 330. CEL matrix during PCM
 331. VEF matrix during PCM
 332. QEFF matrix during PCM
 333. ELD matrix during PCM
 334. PVE tesselation info during PCM
 335. PVE tesselation info during PCM
 336. frozen core Fock operator, in MO basis
337-339. not used
 340. DFT alpha Fock matrix
 341. DFT beta Fock matrix
 342. DFT screening integrals
 343. DFT: V aux basis only
 344. DFT density gradient d/dx integrals
 345. DFT density gradient d/dy integrals
 346. DFT density gradient d/dz integrals

Programmer's Reference 5-48

 347. DFT M[D] alpha density resolution in aux basis
 348. DFT M[D] beta density resolution in aux basis
 349. DFT orbital description
 350. overlap of true and auxiliary DFT basis
 351. previous iteration DFT alpha density
 352. previous iteration DFT beta density
 353. DFT screening matrix (true and aux basis)
 354. DFT screening integrals (aux basis only)
 355. h in MO basis during DDI integral transformation
 356. alpha symmetry MO irrep numbers if UHF/ROHF
 357. beta symmetry MO irrep numbers if UHF/ROHF
358-369. not used
 370. left transformation for pVp
 371. right transformation for pVp
 370. basis A (large component) during NESC
 371. basis B (small component) during NESC
 372. difference basis set A-B1 during NESC
 373. basis N (rel. normalized large component)
 374. basis B1 (small component) during NESC
 375. charges of non-relativistic atoms in NESC
 376. common nuclear charges for all NESC basis
 377. common coordinates for all NESC basis
 378. common exponent values for all NESC basis
 372. left transformation for V during RESC
 373. right transformation for V during RESC
 374. 2T, T is kinetic energy integrals during RESC
 375. pVp integrals during RESC
 376. V integrals during RESC
 377. Sd, overlap eigenvalues during RESC
 378. V, overlap eigenvectors during RESC
 379. Lz integrals
 380. reserved for Ly integrals.
 381. reserved for Lx integrals.
 382. X, AO orthogonalisation matrix during RESC
 383. Td, eigenvalues of 2T during RESC
 384. U, eigenvectors of kinetic energy during RESC
 385. exponents and contraction for the original basis
int 386. shell integer arrays for the original basis
 387. exponents and contraction for uncontracted basis
int 388. shell integer arrays for the uncontracted basis
 389. Transformation to contracted basis
 390. S integrals in the internally uncontracted basis
 391. charges of non-relativistic atoms in RESC
 392. copy of one e- integrals in MO basis in SO-MCQDPT
 393. Density average over all $MCQD groups in SO-MCQDPT
 394. overlap integrals in 128 bit precision
 395. kinetic ints in 128 bit precision, for relativity
 396. non-relativistic h, copy used by LUT-IOTCC
 397. Lx spin-orbit integrals for MCP2E

Programmer's Reference 5-49

 398. Ly spin-orbit integrals for MCP2E
 399. Lz spin-orbit integrals for MCP2E
 400. not used
 401. dynamic polarizability tensors
 402. GVB Lagrangian
 403. MCSCF Lagrangian
 404. GUGA CI Lagrangian (see 308 for CIS)
 405. molecular dip-dip polarizability
 406. MEX search state 1 alpha orbitals
 407. MEX search state 1 beta orbitals
 408. MEX search state 2 alpha orbitals
 409. MEX search state 2 beta orbitals
 410. not used
 411. alpha Pocc during UMP2 gradient (see 301-309)
 412. alpha Pvir during UMP2 gradient
 413. alpha Wai during UMP2 gradient
 414. alpha Lagrangian Lai during UMP2 gradient
 415. alpha Wocc during UMP2 gradient
 416. alpha Wvir during UMP2 gradient
 417. alpha P(MP2/CIS)-P(RHF) during UMP2/USFTDDFT grad
 418. alpha SCF density during UMP2/USFTDDFT gradient
 419. alpha energy wghted density in UMP2/USFTDDFT grad
 420. not used
421-429. same as 411-419, for beta orbitals
 430. not used
440-469. reserved for NEO
 470. QUAMBO expansion matrix
 471. excitation vectors for FMO-TDDFT
 472. X+Y in MO basis during TD-DFT gradient
 473. X-Y in MO basis during TD-DFT gradient
 474. X+Y in AO basis during TD-DFT gradient
 475. X-Y in AO basis during TD-DFT gradient
 476. excited state density during TD-DFT gradient
 477. energy-weighted density in AO basis for TD-DFT
478-489. not used
 490. transition Lagrangian right hand side during NACME
 491. gradients vectors during NACME
 492. NACME vectors during NACME
 493. difference gradient in conical intersection search
 494. derivative coupling vector in CI search
 495. mean energy gradient in CI search
 496. unused
 497. temp storage of gradient of 1st state in CI search
 498. interface data for ab initio multiple spawning
499-500. not used
 501. A2 cavity data in COSMO
 502. A3 cavity data in COSMO
 503. AMTSAV cavity data in COSMO
504-510. not used

Programmer's Reference 5-50

 511. effective polarizability in LRD
 512. C6 coefficients in LRD
 513. C8 coefficients in LRD
 514. C10 coefficients in LRD
 515. atomic pair LRD energy
 520. Malmqvist factorized orb transformation (wrt 325)
 521. SVD localized orthogonal orbitals
 522. SVD localized nonorthogonal orbitals
 523. initial-to-SVD LMO nonorthogonal transformation
 524. SVD LMO nonorthogonal-to-orthogonal transformation
 525. initial-to-SVD LMO orthog transformation (wrt 15)
 526. 1st order density for orthogonal SVD localized MOs
 527. collective orbital reordering for Malmqvist
 528. atom-to-orbital assignment for SVD orbitals
 529. Malmqvist re-ordered set of SVD LMOs
 530. oriented SVD density in the order of record 529
 531. oriented or SVD atom-to-orbital assignment for CT
 532. block zapped 'standard Fock operator' in AO basis
 533. overlap of stored atom's MBS with current basis
 534. occupied+external orthog loc (natural) orbitals
 535. atom-to-orbital assignment for record 534 orbitals
 536. specialized SVD density matrix for EXTERNAL NOS
 537. VVOS no-transfer orbitals+appropriate LMOs.
 538. occupied+VVOS orbitals right after VVOS formation
 539. nonorthogonal SVD localized orbitals
 540. atom-to-orbital assignment for record 539 orbitals
 541. pristine MCSCF orbs during diabatization
 542. reference geometry orbs during diabatization
 543. PT2 state rotation during diabatization
 544. PT2 state energies during diabatization
 545. PT2's CAS-CI largest CI coefs, in diabatization
 546. Group labels for SVD orbitals.
 547. Atom labels for oriented orbitals.
 548. Group labels for oriented orbitals.
 549. Quasi-atomic orbitals during No Charge Transfer
 550. Current guess orbitals during No Charge Transfer
 551. Atom labels during No Charge Transfer
 552. Determinant NCT density for SVD/oriented orbitals.
 553. Total NCT density mtx for SVD/oriented orbitals.
 554. pseudodensity mtx from right coupled cluster NOs.
 555. Unmodified input orbs for checking active space.
 556. DFTB atom-resolved Mulliken populations
 557. DFTB shell-resolved Mulliken populations
 558. DFTB shell-resolved spin populations
 559. DFTB atom-resolved shift contributions
 560. DFTB shell-resolved shift contributions
 561. DFTB shell-resolved shift contributions from spin
 562. DFTB alpha occupation numbers
 563. DFTB beta occupation numbers

Programmer's Reference 5-51

 564. DFTB non-perturbed Hamiltonian in FMO
 565. DFTB HOP contribution in FMO
 566. DFTB atom-resolved shift of ESP in FMO
 567. DFTB atom-resolved shift of ESP in FMO (DFTB3)
 568. DFTB Slater-Kostner tables
 569. DFTB reserved
570-579. unused.
580-599. reserved for Aaron

 600. alpha loc. transformation in LMOEDA
 601. alpha localized orbs in LMOEDA
 602. beta loc. transformation in LMOEDA
 603. beta localized orbs in LMOEDA
 604. alpha Coulomb operator in LMOEDA
 605. alpha exchange operator in LMOEDA
 606. alpha density in LMOEDA
 607. beta Coulomb operator in LMOEDA
 608. beta exchange operator in LMOEDA
 609. beta density in LMOEDA

610-950. mostly not used, but
801-809. xx,xy,xz,yx,yy,yz,zx,zy,zz quadrupole MO ints.
810-815. xx,xy,xz,yy,yz,xx quadrupole AO ints.
 816. LMO dipole-quadrupole polarizability
 817. molecular dipole-quadrupole polarizability

 In order to correctly pass data between different
machine types when running in parallel, it is required that
a DAF record must contain only floating point values, or
only integer values. No logical or Hollerith data may be
stored. The final calling argument to DAWRIT and DAREAD
must be 0 or 1 to indicate floating point or integer values
are involved. The records containing integers are so
marked in the list below.

 Physical record 1 (containing the DAF directory) is
written whenever a new record is added to the file. This
is invisible to the programmer. The numbers shown above
are "logical record numbers", and are the only thing that
the programmer need be concerned with.

