AN INTRODUCTION TO GAMESS

See: www.msg.chem.iastate.edu
• **General Atomic and Molecular Electronic Structure System**

• General purpose electronic structure code

• Primary focus is on *ab initio* quantum chemistry calculations

• Also can do
 – Density functional theory calculations
 – Other semi-empirical calculations (AM1, PM3)
 – QM/MM calculations
 – Solvent effects
• Reaction path is least energy path
 – From reactants (R) through TS to products (P)
 • Minimum energy path (MEP)
 • Also called intrinsic reaction coordinate (IRC)
 • Follows steepest descent path from TS to R or P
 • Steepest descent means -gradient
 – IRC = MEP:
 • Confirms connection between R, TS, P
 • Provides first step in study of reaction dynamics
CORRELATION METHODS

• Perturbation theory

 \[E = E^{(0)} + E^{(1)} + E^{(2)} + \ldots \]

 • Simplest \(E^{(0)} = E_{\text{HF}} \): Then, \(E^{(1)} = 0 \)

 • If series is terminated at second order: MP2

 • Series does not always converge well
 – Best to just stop at MP2 (MP3, MP4 often terrible)

 • MP2 scales as \(N^5 \)
 – Often good compromise between efficiency & accuracy

• Includes dispersion naturally

• Often over-binds weak interactions (benzene dimer)
CORRELATION METHODS

• Coupled cluster theory

\[\psi = e^T \psi_0 \]

- \(\psi_0 \) usually is \(\psi_{HF} \)
- \(T = \text{cluster operator} = T_1 + T_2 + T_3 + \ldots + T_N \)
- \(T_1 = \text{sum of 1-particle operators} = \sum t_i \) (\(N^4 \) scaling)
- \(T_2 = \text{sum of 2-particle operators} = \sum \sum [t_{ij} + t_i t_j] \) (\(N^6 \) scaling)
- \(T_3 = \text{sum of 3-particle operators} = \sum \sum \sum [t_{ijk} + t_i t_{jk} + \ldots] \) (\(N^8 \))
- Approximations
 - \(T \approx T_1 + T_2 \): CCSD (singles (S) + doubles (D)): \(\sim N^6 \)
 - \(T \approx T_1 + T_2 + T_3 \): CCSDT (very expensive): \(\sim N^8 \)
- Common compromise: CCSD(T): \(N^7 \) scaling
 - Get triples (T) using perturbation theory (not iterative)
OVERVIEW OF GAMESS

• Types of wavefunctions
 – Hartree-Fock (RHF, ROHF, UHF, GVB)
 – CASSCF
 – CI, MRCI
 – Coupled cluster methods
 – Second order perturbation theory
 • MP2 (closed shells)
 • ROMP2 (spin-correct open shells)
 • UMP2 (unrestricted open shells)
 • MCQDPT(CASSCF - MRMP2)
 – Localized orbitals (SCF, MCSCF)
OVERVIEW OF GAMESS

• Types of wavefunctions
 – Fragment Molecular Orbital Theory (FMO)
 • Enables calculations on very large systems
 – Thousands of atoms
 • HF, DFT, MP2 (closed shells)
 • ROMP2 (spin-correct open shells)
 • Coupled Cluster methods
 • MCSCF
OVERVIEW OF GAMESS

• Energy-related properties
 – Total energy as function of nuclear coordinates (PES): All wavefunction types
 – Analytic energy gradient
 • RHF, ROHF, UHF, MCSCF, CI, DFT
 • MP2, UMP2, ROMP2
 – Analytic Hessian
 – RHF, ROHF, TCSCF/GVB
 – MCSCF
 – Semi-numerical Hessian
 • MP2, UMP2, ROMP2
- Fully Numerical Hessian
 - CCSD(T), MRMP2
OVERVIEW OF GAMESS

• Energy-related properties (cont’d)
 – Numerical Hessians from finite differences of analytic gradients
 – Fully numerical derivatives for all methods
 – Saddle point (TS) search (requires Hessian)
 – Minimum energy path = Intrinsinc reaction coordinate
 • Several IRC options - GS2 (default) is most effective
 • Requires frequency input, gradients along path
 • Follow reaction path from reactants through TS to products
 • Build reaction path Hamiltonian (RPH): dynamics
• Energy-related properties (cont’d)
 – Dynamic reaction coordinate (DRC)
 • Add kinetic energy to system at any geometry
 • Add photon(s) to any vibrational mode
 • Classical trajectory using QM-derived energies
 • Requires gradients
 – Monte Carlo sampling: find global minimum
 – Molecular dynamics
 • MM, FMO
OVERVIEW OF GAMESS

- Other functionalities
 - Spin-orbit coupling
 • Any spin states, any number of states
 • Full two-electron Breit-Pauli
 • Partial two-electron (P2e)-very efficient, accurate
 • Semi-empirical one-electron Z_{eff}
 • RESC
 • Averaging over vibrational states
 - Other relativistic effects: Douglas-Kroll to 3rd order
 - Derivative (vibronic) coupling
 • MCSCF, MRMP2
OVERVIEW OF GAMESS

• Interpretive tools
 – Localized molecular orbitals (LMO)
 – Localized charge distributions (LCD)
 – MCSCF localized orbitals

• Nuclear and spectroscopic properties
 – Spin densities at nucleus (ESR)
 – NMR chemical shifts
 – Polarizabilities, hyperpolarizabilities
 – IR and Raman intensities
 – Transition probabilities, Franck-Condon overlaps
OVERVIEW OF GAMESS

• QM/MM Methods
 – Effective fragment potential (EFP) method for
 • Cluster studies of liquids
 • Cluster studies of solvent effects
 • Interfaced with continuum methods for study of liquids and solvation in bulk
 • Covalent link for study of enzymes, proteins, materials
 • General model for intermolecular interactions
 – SIMOMM: QM/MM method for surface chemistry
 • QM part can be any method in GAMESS
 • MM part from Tinker (Jay Ponder - Washington U)
 • Moving to ReaxFF (Goddard)
USING GAMESS

• GAMESS runs on
 – Any UNIX-based system
 – Any Linux-based system
 – Any Macintosh
 – Windows

• GAMESS can be downloaded from
 – www.msg.chem.iastate.edu
 – License required - no cost
USING GAMESS

• For Macintosh
 – OSX, same as UNIX/LINUX

• For UNIX/LINUX systems requires script

• Output appears in .log file

• Vectors, coordinates, Hessians in .dat file

• IRC data, numerical restart data for frequencies appear in .irc file

• Main Monte Carlo output in .irc file
USING GAMESS

- Input files are modular, arranged in $groups
- Most common input groups
 - $SYSTEM: specifies memory, time limit
 - $CONTRL: specifies basics of calculation
 - $BASIS: specifies basis set if standard
 - $DATA: specifies nuclear coordinates, basis set if non-standard
- Other important groups:
 - $GUESS, $SCF, $FORCE, $HESS, $VEC, $IRC, $VIB
USING GAMESS

• $ sign specifying group must be in column 2
• All groups must terminate with $END (this $ can be anywhere except column 1)
USING GAMESS

• $SYSTEM group:
 – TIMLIM=(default=600 min)
 – MWORDS=(default=1)
 – MEMDDI=
 • Only relevant for parallel run
 • Total required memory (divide by number of processors to get memory requested/node)
USING GAMESS

• \texttt{CONTRL} group:
 – $\texttt{ICHARG}=\text{ (specifies charge on system)}$
 – $\texttt{MULT}=\text{ (specifies spin multiplicity)}$
 • 1 for singlet, 2 for doublet, …
 – $\texttt{EXETYP}=\text{ }$
 • Check: checks input for errors
 • Run: actual run
 – $\texttt{UNITS}=\text{ }$
 • aangs (default)
 • bohr
• **$\text{CONTRL group:}**
 – `Runtyp=` (type of run)
 • Energy (single point energy run)
 • Gradient (energy 1st derivative wrt coordinates)
 • Optimize (optimize geometry)
 • Hessian (energy second derivative, vibrational frequencies, thermodynamic properties): generates $\text{HESS group in .dat file}$
 • Sadpoint (saddle point search: requires hessian in HESS group)
 • IRC (performs IRC calculation: usually requires $\text{IRC group, HESS group}$)
USING GAMESS

• **$CONTRL group:**
 – `scftyp=` *(type of wavefunction)*
 • RHF
 • ROHF
 • UHF
 • MCSCF
 • GVB
 – `mplevel=`
 • 0 *(default, no perturbation theory)*
 • 2 *(MP2: valid for RHF, ROHF, MCSCF, GVB)*
 – `DFTTYP=`
 • None *(default)*
 • `xxx` Specify name of functional
$CONTRL$ group:

- $\text{cctyp}=$
 - NONE (no coupled cluster, default)
 - CCSD (singles+doubles)
 - CCSD(T) adds perturbative triples to CCSD
 - Most popular method
 - Triples essential for accurate calculations
 - CR-CCL
 - Specialized method to approximate bond-breaking
 - EOM-CCSD, CR-EOM
 - Excited states via equations-of-motion CC
$BASIS$ group:

- $GBASIS$=
 - STO
 - $N21$
 - $N31$
 - $TZV...$
- $NGAUSS$=(# gaussians for STO, $N21$, $N31$)
- $NDFUNC$=(# sets of d' s on heavy atoms)
- $NPFUNC$=(# sets of p' s on hydrogens)
- $NFFUNC$=(# sets of f' s on TM's)
USING GAMESS

• BASIS group:
 – DIFFSP=.T. (diffuse sp functions on heavy atoms)
 – DIFFS=.T. (diffuse s functions on hydrogens)
 – GBASIS=ccn (correlation consistent)
 • $n=2,3,4,5,6$
 – GBASIS=accn (augmented cc--pVXZ)
 – GBASIS=ccnc (core correlation)
 – GBASIS=acnc (augmented core correlation)
 – GBASIS=MC-DZP, MC-TZP, MC-QZP
HF WATER

- **basis set** | **#bf** | **#2-EI (theory)** | **#2-EI (actual)** | **CPU time (sec)**
- **ccd** | 24 | 41,472 | 13863 | .1
- **cct** | 58 | 1,414,562 | 566,091 | .3
- **acct** | 92 | 8,954,912 | 3,754,821 | 1.4
- **ccq** | 115 | 21,862,578 | 11,695,586 | 4.0
- **accq** | 172 | 109,401,632 | 64,214,254 | 19.7

- HF Scales ~ N^4, $n =$ # basis functions
- $(172/115)^4 = 5.0$: $19.7/4.0 = 4.9$
USING GAMESS

• $DATA$ group
 – Title line (will be printed in output)
 – Symmetry group
 • C1
 • CS
 • CNV 2 (C2V), …
 • Blank line except C1
USING GAMESS

• **$DATA group**
 - Symbol Z xcoord ycoord zcoord
 • Symbol = atomic symbol
 • Z = atomic number
 • xcoord, ycoord, zcoord = Cartesian coords
 • Internal coords is another option
 - Repeat this line for each *symmetry unique* atom (see below)
 - Need to specify basis set after each coordinate line if *$BASIS* is not present
USING GAMESS

• $DATA$ group
 – symmetry unique atoms
 • H_2O: O and 1 H
 • NH_3: N and 1 H
 – saves CPU time
 • numerical hessians only displace symmetry unique atoms
 • Reduces # integrals to be calculated
 – Need to follow conventions in GAMEESS manual
 • C_s, C_{nh}: plane is XY
 • C_{nv}: axis is Z
 – For C_{infv}, use C_{4v}
 – For D_{infh}, use D_{4h}
USING GAMESS

• $GUESS$ group
 – Built-in guess (default) works much of the time
 – $GUESS=$MOREAD,NORB=xx END
 • Requires VEC group (usually from .dat file)
 • NORB=# MO’s to be read in
 • Useful when SCF convergence is difficult
 • Necessary for MCSCF, CI
RUNNING GAMESS

• Prepare input file
 – Within UNIX/Linux using vi line editor
 – On Mac or PC using editor of choice
 – Name of file must be xxx.inp

• Submit job by
 – gms xxx -q fred -l xxx.geomopt.log
RUNNING GAMESS

• Output files
 – .log file appears in directory in which job was submitted
 – .dat file contains basis set, coordinates, orbitals ($VEC group), gradient ($grad group), hessian ($HESS group), depending on type of run
 – .irc file contains $VIB group (restart for numerical hessians), $IRC group
 – Destroy .dat file & .irc file before re-running
 • rm ~/scr/xxx.dat
RUNNING GAMESS

•For more info, see
 –www.msg.chem.iastate.edu
 –GAMESS sub-page