AN INTRODUCTION TO MCSCF
ORBITAL APPROXIMATION

\[\Psi_{hp} = \psi_1(1)\psi_2(2)\ldots\psi_N(N) \]

- Hartree product (hp) expressed as a product of spinorbitals \(\psi_i = \phi_i\sigma_i \)
- \(\phi_i = \) space orbital, \(\sigma_i = \) spin function \((\alpha,\beta) \)
- Pauli Principle requires antisymmetry:

\[\Psi = \hat{A}\Psi_{hp} = |\psi_1(1)\psi_2(2)\ldots\psi_N(N)| \]
• For more complex species (one or more open shells) antisymmetric wavefunction is generally expressed as a linear combination of Slater determinants

• Optimization of the orbitals (minimization of the energy with respect to all orbitals), based on the Variational Principle leads to:
HARTREE-FOCK METHOD

- Optimization of orbitals leads to
 - \(F\phi_i = \varepsilon_i \phi_i \)
 - \(F = \) Fock operator = \(h_i + \sum_i (2J_i - K_i) \) for closed shells
 - \(\phi_i = \) optimized orbital
 - \(\varepsilon_i = \) orbital energy
HARTREE-FOCK METHOD

• Consider H_2:

• The 2-electron case can be written as

$$\Psi = \phi_1(1)\phi_1(2)\left[\alpha(1)\beta(2) - \alpha(2)\beta(1)\right](2^{-1/2}) = \Phi \Sigma$$

• $\Psi = \text{(space function)} \cdot \text{(spin function)}$
• Simplest MO for H_2 is minimal basis set:
 \[\phi_1 = [2(1+S)]^{-1/2} (1s_A + 1s_B) \]
 - $1s_A, 1s_B$ = AOs on H_A, H_B, respectively

• Expectation value of energy $\langle E \rangle$ is
 \[\langle E \rangle = \langle \Psi | H | \Psi \rangle = \langle \Phi | H | \Phi \rangle < \Sigma | \Sigma > \]
 - Since H is spin-free
 - Main focus here is on space part:
 \[\Phi = \phi_1(1)\phi_1(2) \]
 \[= [2(1+S)]^{-1}[1s_A(1)+1s_B(1)][1s_A(2)+1s_B(2)] \]
- $\Phi = [2(1+S)]^{-1}[1s_A(1)1s_A(2)+1s_B(1)1s_B(2) + 1s_A(1)1s_B(2)+1S_A(2)1s_B(1)]$

1st 2 terms = ionic, 2nd 2 terms = covalent

- $\Phi = [2(1+S)]^{-1} [\Phi_{\text{ion}} + \Phi_{\text{cov}}]$

- $S = \text{overlap integral}$

- So, HF wavefunction is equal mix of covalent & ionic contributions

- Apparently OK ~ equilibrium geometry

- Consider behavior as $R \to \infty$: $S \to 0$

- $\Phi \to 1/2 [\Phi_{\text{ion}} + \Phi_{\text{cov}}]$

- $<E> \to 1/4<\Phi_{\text{ion}} + \Phi_{\text{cov}}|H|\Phi_{\text{ion}} + \Phi_{\text{cov}}>}$
• The Hamiltonian is

\[H = H_1^{(0)} + H_2^{(0)} + \frac{1}{r_{12}} \]

\[H_1^{(0)} = -(1/2) \nabla_1^2 - \frac{Z_A}{r_{A1}} - \frac{Z_B}{r_{B1}} \]

• Plugging in & recognizing that as \(R \to \infty \), many terms \(\to 0 \):

\[\langle E \rangle_{R \to \infty} \to \frac{1}{2}[(E_{H+} + E_{H-}) + 2E_H] \]
• So, the HF wavefunction gives the wrong limit as H_2 dissociates, because ionic & covalent terms have equal weights.
• Must be OK $\sim R_e$, since HF often gives good geometries
• HF/CBS $D_e \sim 3.64$ ev. Cf., $D_e(\text{expt}) \sim 4.75$ ev
VALENCE BOND METHOD

- Alternative to MO, originally called Heitler-London theory
- *Presumes a priori* that bonds are covalent:
 - $\phi_1 = 1s_A(1)1s_B(2); \quad \phi_2 = 1s_A(2)1s_B(1)$
 - $\Psi_{VB} = [2(1+S_{12})]^{-1/2}[\phi_1 + \phi_2]; \quad S_{12} = \langle\phi_1|\phi_2\rangle = S_{AB}^2$
- Only covalent part, no ionic terms
- Apply linear variation theory in usual way:
 - Dissociation to correct limit H + H
 - $D_e \sim 3.78$ ev; cf., D_e (expt) ~ 4.75 ev.
• So, the MO wavefunction gives the wrong limit as H_2 dissociates, whereas VB gives correct limit.

• Both MO and VB give poor D_e

• MO incorporates too much ionic character

• VB completely ignores ionic character

• Both are inflexible

• How can these methods be improved?
Could improve VB by adding ionic terms using variational approach:

\[\Psi_{VB,imp} = \Psi_{VB} + \gamma \Psi_{ion} = \Psi_{cov} + \gamma \Psi_{ion} \]

- where \(\gamma \) = variational parameter.

- Expect \(\gamma \sim 1 \sim R = R_e \) & \(\gamma \to 0 \) as \(R \to \infty \)

Generalized valence bond (GVB) method: W.A. Goddard III

Since MO method over-emphasizes ionic character, want to do something similar, but in reverse
IMPROVING VB AND MO

- Improve MO by allowing electrons to stay away from each other: decrease importance of ionic terms. Recall (ignoring normalization)
 - $\Psi_{MO} = \phi_1(1)\phi_1(2): \quad \phi_1 = 1s_A + 1s_B$
- Antibonding orbital
 - $\Psi_{MO}^* = \phi_2(1)\phi_2(2): \quad \phi_2 = 1s_A - 1s_B$
 - Keeps electrons away from each other.
So, we write (ignoring normalization)

- $\Psi_{\text{MO,imp}} = \Psi_{\text{MO}} + \lambda \Psi_{\text{MO}}^* = \phi_1(1)\phi_1(2) + \lambda \phi_2(1)\phi_2(2)$

- where $\lambda =$ variational parameter

- $|\lambda| \sim 0$ at $R = R_e$

- $\rightarrow 1$ as $R \rightarrow \infty$

Can easily show that

- $\Psi_{\text{MO,imp}} = \Psi_{\text{VB,imp}}: \gamma = (1+\lambda)/(1-\lambda)$

$\Psi_{\text{MO,imp}}$ is simplest MCSCF wavefunction

- Gives smooth dissociation to $H + H$

- Called TCSCF (two configuration SCF)
H₂ RHF VS. UHF

- Recall that
 - $\phi_1 = [2(1+S)]^{-1/2} (1s_A + 1s_B)$: bonding MO
 - $\phi_2 = [2(1-S)]^{-1/2} (1s_A - 1s_B)$: anti-bonding MO

- Ground state wavefunction is

$$\Psi = | \phi_1 \bar{\phi}_1 |$$

- Ground state space function $\Phi = \phi_1(1) \phi_1(2)$
- RHF since α, β electrons restricted to same MO
Can introduce flexibility into the wavefunction by relaxing RHF restriction.

- Define two new orbitals $\phi_1^\alpha, \phi_1^\beta$, so that

- $\Phi_{UHF} = \phi_1^\alpha(1) \phi_1^\beta(2)$: Unrestricted HF/UHF, different orbitals for different spins: DODS

Can expand these 2 UHF orbitals in terms of 2 known linearly independent functions. Take these to be ϕ_1, ϕ_2:

- $\phi_1^\alpha = \phi_1 \cos \theta + \phi_2 \sin \theta \quad 0 \leq \theta \leq 45^\circ$
- $\phi_1^\beta = \phi_1 \cos \theta - \phi_2 \sin \theta \quad \theta = 0^\circ$: RHF solution
• Can expand $\phi_1^\alpha, \phi_1^\beta$ in terms of $1s_A, 1s_B$
• Then derive $\langle E(\theta) \rangle$, $d\langle E(\theta) \rangle / d\theta$, $d^2 \langle E(\theta) \rangle / d\theta^2$
 – Details in Szabo & Ostlund; 2 possibilities:

 ![Diagram](image-url)

 RHF solution: stable
 RHF unstable: UHF

• Corresponds to Pople RHF/UHF stability test
As H-H bond in H_2 is stretched,

- Optimal value of θ must become nonzero, since
- We know RHF solution is incorrect at asymptote
- As $R \to \infty$, $\theta \to 45^\circ$
- Can express UHF wavefunction as

$$
\Psi_{UHF} = \cos^2 \Theta | \phi_1 \bar{\phi}_1 | - \sin^2 \Theta | \phi_2 \bar{\phi}_2 | - \sin \Theta \cos \Theta \{ | \phi_1 \bar{\phi}_2 | - | \phi_2 \bar{\phi}_1 | \}
$$

- Note that 1st 2 terms are just MCSCF wavefunction
- 3rd term corresponds to spin contamination
\(\Psi_{UHF} = \cos^2 \Theta | \phi_1 \phi_1 \rangle - \sin^2 \Theta | \phi_2 \phi_2 \rangle \\
- \sin \Theta \cos \Theta \{ | \phi_1 \phi_2 \rangle - | \phi_2 \phi_1 \rangle \} \)

- At \(\theta=0^\circ \), \(\Psi_{UHF} = \Psi_{RHF} = | \phi_1 \phi_1 \rangle \)
- At \(\theta=45^\circ \), \(\Psi_{UHF} = \frac{1}{2} | \phi_1 \phi_1 \rangle - \frac{1}{2} | \phi_2 \phi_2 \rangle - \frac{1}{2} \Psi \)
- So, UHF wavefunction correctly dissociates to \(H + H \), but wavefunction is 50-50 mixture of singlet and triplet
- UHF therefore gives non-integer natural orbital occupation numbers.

Simplest way of going beyond simple RHF
BUT: Beware spin contamination
How many bonds \((m)\) am I going to break?

Could mean breaking bonds by excitation

How many electrons \((n)\) are involved?

Active space is \((n,m)\)

- \(n\) electrons in \(m\) orbitals
- Full CI within chosen active space: CASSCF/FORS

\(\text{H}_2\): 2 electrons in 2 orbitals

\(\text{CH}_2\)?
• Consider simple Walsh diagram

- In H₂O, a₁, b₁ both doubly occ lone pairs: HF OK
- b₁ = pure p HOMO, a₁ s character -> 0 as θ -> 180°
- At θ=180°, (a₁, b₁) become degenerate π orbital
- In CH$_2$, a_1=HOMO, b_1=LUMO
- At $\theta=90^\circ$, $N(a_1)$~2, $N(b_1)$~0: HF OK
- At $\theta=180^\circ$, (a_1,b_1) = degenerate π orbital, so

$$\Psi = (2)^{-1/2} \{ |a_1 a_1^\dagger| - |b_1 b_1^\dagger| \}$$

- There are 2 equally weighted configurations
• Most general form of $^1\text{CH}_2$ wavefunction is

$$\Psi = C_1 | a_1 \bar{a}_1 | + C_2 | b_1 \bar{b}_1 |$$

• This is a FORS or CASSCF wavefunction:
 – 2 active electrons in 2 active orbitals: (2,2)
 – At $\theta \sim 90^\circ$: $C_1 \sim 1$, $C_2 \sim 0$: NOON $\sim 2,0$
 – At $\theta = 180^\circ$: $C_1 = C_2 = 2^{-1/2}$: NOON $\sim 1,1$
Now consider N_2 dissociation:

- Breaking 3 bonds: $\sigma + 2\pi$
- **Minimum correct FORS/CASSCF=(6,6)**

 6 electrons in 6 orbitals "active space"

- N_2 used as benchmark for new methods designed for bond-breaking

 • Head-Gordon
 • Piecuch
 • Krylov
MCSCF

- Scales exponentially within active space
 - Full CI within active space: size consistent
- Necessary for
 - Diradicals
 - Unsaturated transition metals
 - Excited states
 - Often transition states
- CASSCF accounts for near-degeneracies
- Still need to correct for rest of electron correlation: “dynamic correlation”
MULTI-REFERENCE METHODS

- Multi-reference CI: MRCI
 - CI from set of MCSCF configurations
 - SOCI in GAMESS
 - Most commonly stops at singles and doubles
 - MR(SD)CI: NOT size-consistent
 - Very demanding
 - \(\sim \) impossible to go past 14 electrons in 14 orbitals

- Multi-reference perturbation theory (MBPT)
 - More efficient than MRCI
 - Not usually as accurate as MRCI
 - Size consistency depends on implementation
FULL CI -> exact answer

MCQDPT2

MP2

MCSCF

RHF/ROHF

Hartree-Fock Limit

basis set size

correlation