
AN INTRODUCTION TO 
MCSCF 



ORBITAL APPROXIMATION 

• Hartree product (hp) expressed as a product 
of spinorbitals ψι = φiσi	


•   φi = space orbital, σi = spin function (α,β)	

•  Pauli Principle requires antisymmetry: 

Ψh p = ψ1(1)ψ2(2)…ψN(N)

Ψ =  ÂΨh p = |ψ1(1)ψ2(2)…ψN(N)|



ORBITAL APPROXIMATION 

•  For more complex species (one or more open 
shells) antisymmetric wavefunction is 
generally expressed as a linear combination of 
Slater determinants 

• Optimization of the orbitals (minimization of 
the energy with respect to all orbitals), based 
on the Variational Principle) leads to:  



HARTREE-FOCK METHOD 

• Optimization of orbitals leads to 
– Fφi = εiφi 
– F = Fock operator = hi + ∑i(2Ji - Ki) for closed 

shells 
–  φi = optimized orbital 
–  εi = orbital energy 



HARTREE-FOCK METHOD 
• Closed Shells: Restricted Hartree-Fock (RHF) 

  Ψ = |φ1φ 1φ2φ 2φNφ N |
• Consider H2: Ψ = |φ1φ 1 |

•  The 2-electron case can be written more simply 
•   Ψ=φ1(1)φ1(2)[α(1)β(2)-α(2)β(1)](2-1/2)=ΦΣ	

•   Ψ=(space function) (spin function) 



•  Simplest MO for H2 is minimal basis set: 
•   φ1=[2(1+S)]-1/2 (1sA + 1sB) 

– 1sA, 1sB=AOs on HA, HB, respectively 
•  Expectation value of energy <E> is 

– <E>=<Ψ|Η|Ψ>=<Φ|Η|Φ> <Σ|Σ>  
– Since H is spin-free,  
– Main focus is on space part: 
–  Φ=φ1(1)φ1(2) 
–    =[2(1+S)]-1[1sA(1)+1sB(1)][1sA(2)+1sB(2)] 



–  Φ =[2(1+S)]-1[1sA(1)1sA(2)+1sB(1)1sB(2) +               
   1sA(1)1sB(2)+1SA(2)1sB(1)] 

•  1st 2 terms = ionic, 2nd 2 terms = covalent 
–  Φ =[2(1+S)]-1 [Φion + Φcov] 
– So, HF wavefunction is equal mix of covalent & 

ionic contributions 
– Apparently OK ~ equilibrium geometry 
– Consider behavior as R --> ∞: S--> 0 
–  Φ -->1/2 [Φion + Φcov] 
– <E>-->1/4<Φion+Φcov|H|Φion+Φcov> 



•  The Hamiltonian is  

H = H1
(0) +H2

(0) +1 / r12
H1(0) = −(1/ 2)∇12 − ZA / rA1 − ZB / rB1

•  Plugging in & recognizing that as R->∞, many 
terms -> 0: 
– <E>R->∞ -> 1/2[(EH+ + EH-) + 2EH] 



•  So, the HF wavefunction gives the wrong limit 
as H2 dissociates, because ionic & covalent 
terms have equal weights.  

• Must be OK ~ Re, since HF often gives good 
geometries 

• HF/MBS De~3.64 ev.  Cf., De(expt)~4.75 ev 



VALENCE BOND METHOD 
•  Alternative to MO, originally called Heitler-

London theory  
•  Presumes a priori that bonds are covalent: 

–  φ1=1sA(1)1sB(2);   φ2=1sA(2)1sB(1) 
–  ΨVB=[2(1+S12)]-1/2[φ1 + φ2];  S12=<φ1|φ2> = SAB

2 

•  Apply linear variation theory in usual way: 
– Dissociation to correct limit H + H 
– De~3.78 ev; cf., De(expt)~4.75 ev. 



•  So, the MO wavefunction gives the wrong limit 
as H2 dissociates, whereas VB gives correct 
limit.  

•  Both MO and VB give poor De 
• MO incorporates too much ionic character 
•  VB completely ignores ionic character 
•  Both are inflexible 

• How can these methods be improved? 



IMPROVING VB AND MO 
• Could improve VB by adding ionic terms using 

variational approach:  
–  ΨVB,imp=ΨVB + γΨion = Ψcov + γΨion

 

– where γ = variational parameter. 
– Expect γ~1 ~R=Re & γ ->0 as R-> ∞ 

•  Since MO method over-emphasizes ionic 
character, want to do something similar, but in 
reverse 



IMPROVING VB AND MO 
•  Improve MO by allowing electrons to stay 

away from each other: decrease importance of 
ionic terms.  Recall (ignoring normalization) 
–  ΨMO=φ1(1)φ1(2):  φ1=1sA + 1sB

 

•  Antibonding orbital 
–  ΨMO

*=φ2(1)φ2(2):  φ2=1sA - 1sB 

– Keeps electrons away from each other.  



•  So, we write (ignoring normalization) 
–  ΨMO,imp= ΨMO + λΨMO

* =φ1(1)φ1(2) + λ φ2(1)φ2(2) 

– where λ = variational parameter 
–  |λ|∼0 at R = Re 
–      -> 1 as R-> ∞ 

• Can easily show that 
–  ΨMO,imp= ΨVB,imp; γ = (1+λ)/(1-λ)	


•   ΨMO,imp is simplest MCSCF wavefunction 
– Gives smooth dissociation to H + H 
– Called TCSCF (two configuration SCF) 



RHF VS. UHF 
• Recall that 

–  φ1=[2(1+S)]-1/2 (1sA + 1sB): bonding MO 

–  φ2=[2(1-S)]-1/2 (1sA - 1sB): anti-bonding MO 

• Ground state wavefunction is 	
  

Ψ = |φ1φ 1 |
– Ground state space function Φ = φ1(1)φ1(2)	

–  RHF since α,β electrons restricted to same MO 



• Can introduce flexibility into the wavefunction 
by relaxing RHF restriction.   
– Define two new orbitals φ1

α,φ1
β, so that 

–  ΦUHF =  φ1
α(1) φ1

β(2): Unrestricted HF/UHF, 
different orbitals for different spins: DODS 

• Can expand these 2 UHF orbitals in terms of 2 
known linearly independent functions.  Take 
these to be φ1, φ2:	

–  φ1

α =φ1cosθ + φ2sinθ	
 0≤θ≤45˚ 
–  φ1

β = φ1cosθ - φ2sinθ θ=0˚: RHF solution	




• Can expand φ1
α,φ1

β in terms of 1sA, 1sB 
•  Then derive <E(θ)>, d<E(θ)>/dθ, d2<E(θ)>/dθ2	


–  Details in Szabo & Ostlund; 2 possibilities: 

0 θ

<E>

RHF solution: stable
0 θ

<E>

RHF unstable: UHF

• Corresponds to Pople RHF/UHF stablity test 



•  As H-H bond in H2 is stretched, 
– Optimal value of θ must become nonzero, since 
– We know RHF solution is incorrect at asymptote 
– As R->∞, θ-> 45˚ 
– Can express UHF wavefunction as 

ΨUHF = cos2Θ | φ1φ 1 | − sin
2Θ | φ2φ 2 |

− sinΘcosΘ{|φ1φ 2 | − | φ2φ 1 |}
– Note that 1st 2 terms are just MCSCF wavefunction 
– 3rd term corresponds to spin contamination 



•  At θ=0˚, ΨUHF = ΨRHF =  

ΨUHF = cos2Θ | φ1φ 1 | − sin
2Θ | φ2φ 2 |

− sinΘcosΘ{|φ1φ 2 | − | φ2φ 1 |}

|φ1φ 1 |

•  At θ=45˚,    ΨUHF = 1 / 2 | φ1φ 1 | −1 / 2 |φ2φ 2 | −1 /2
3Ψ

•  So, UHF wavefunction correctly dissociates to 
H + H, but wavefunction is 50-50 mixture of 
singlet and triplet 

• UHF therefore gives non-integer natural orbital 
occupation numbers. 



SINGLET CH2 
• Consider simple Walsh diagram 

ε = orbital energy	


– In H2O, a1, b1 both doubly occ lone pairs: HF OK 
– b1 =pure p HOMO, a1 s character-> 0 as θ-> 180˚ 
– At θ=180˚, (a1,b1) become degenerate π orbital 

ε

θ (HCH)

b1

a1

90 180



– In CH2, a1=HOMO, b1=LUMO 
– At θ=90˚, N(a1)~2, N(b1)~0: HF OK 
– At θ=180˚, (a1,b1) = degenerate π orbital, so 

ε

θ (HCH)

b1

a1

90 180

Ψ = (2)−1/ 2{|a1a 1 | − | b1b 1 |}
– There are 2 equally weighted configurations  



• Most general form of 1CH2 wavefunction is 

Ψ = C1 | a1a 1 |+C2 | b1b 1 |

•  This is a FORS or CASSCF wavefunction: 
– 2 active electrons in 2 active orbitals: (2,2) 
– At θ~90˚: C1~1, C2~0: NOON~2,0 
– At θ=180˚: C1=C2=2-1/2: NOON~1,1 



• Now consider N2 dissociation: 
– Breaking 3 bonds: σ + 2π 
– Minimum correct FORS/CASSCF=(6,6) 
– Used as benchmark for new methods 

designed for bond-breaking 
• Head-Gordon 
• Piecuch 
• Krylov 
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MCSCF 
•  Scales exponentially within active space 

– Full CI within active space: size consistent 
• Necessary for 

– Diradicals 
– Unsaturated transition metals 
– Excited states 
– Often transition states  

• CASSCF accounts for near-degeneracies 
•  Still need to correct for rest of electron 

correlation: “dynamic correlation” 



MULTI-REFERENCE METHODS 
• Multi-reference CI: MRCI 

– CI from set of MCSCF configurations 
– SOCI in GAMESS 
– Most commonly stops at singles and doubles 

• MR(SD)CI: NOT size-consistent 
• Very demanding 
• ~ impossible to go past 14 electrons in 14 orbitals 

• Multi-reference perturbation theory 
– More efficient than MRCI 
– Not usually as accurate as MRCI 
– Size consistency depends on implementation 
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