
AN INTRODUCTION TO
MCSCF



ORBITAL APPROXIMATION

Hartree product (hp) expressed as a product
of spinorbitals ψι = φiσi

 φi = space orbital, σi = spin function (α,β)

Pauli Principle requires antisymmetry:

•

•
•



ORBITAL APPROXIMATION

For more complex species (one or more open
shells) antisymmetric wavefunction is generally
expressed as a linear combination of Slater
determinants
Optimization of the orbitals (minimization of

the energy with respect to all orbitals), based
on the Variational Principle) leads to:

•

•



HARTREE-FOCK METHOD

Optimization of orbitals leads to
Fφi = εiφi

F = Fock operator = hi + ∑i(2Ji - Ki) for closed
shells

 φi = optimized orbital

 εi = orbital energy

•
–
–

–

–



HARTREE-FOCK METHOD
Closed Shells: Restricted Hartree-Fock (RHF)•

Consider H2:•

The 2-electron case can be written more simply
 Ψ=φ1(1)φ1(2)[α(1)β(2)−α(2)β(1)](2−1/2)=ΦΣ

 Ψ=(space function) (spin function)

•
•

•



Simplest MO for H2 is minimal basis set:

 φ1=[2(1+S)]-1/2 (1sA + 1sB)
1sA, 1sB=AOs on HA, HB, respectively

Expectation value of energy <E> is
<E>=<Ψ|Η|Ψ>=<Φ|Η|Φ> <Σ|Σ> 
Since H is spin-free, 
Main focus is on space part:
 Φ=φ1(1)φ1(2)

   =[2(1+S)]-1[1sA(1)+1sB(1)][1sA(2)+1sB(2)]

•

•
–

•
–
–
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 Φ =[2(1+S)]-1[1sA(1)1sA(2)+1sB(1)1sB(2) +            
                          1sA(1)1sB(2)+1SA(2)1sB(1)]

1st 2 terms = ionic, 2nd 2 terms = covalent
 Φ =[2(1+S)]-1 [Φion + Φcov]
So, HF wavefunction is equal mix of covalent &

ionic contributions
Apparently OK ~ equilibrium geometry
Consider behavior as R --> ∞: S--> 0
 Φ -->1/2 [Φion + Φcov]

<E>-->1/4<Φion+Φcov|H|Φion+Φcov>

–
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The Hamiltonian is•

Plugging in & recognizing that as R->∞, many
terms -> 0:

<E>R->∞ -> 1/2[(EH+ + EH-) + 2EH]

•

–



So, the HF wavefunction gives the wrong limit
as H2 dissociates, because ionic & covalent
terms have equal weights. 
Must be OK ~ Re, since HF often gives good

geometries
HF/MBS De~3.64 ev.  Cf., De(expt)~4.75 ev

•

•

•



VALENCE BOND METHOD
Alternative to MO, originally called Heitler-

London theory 
Presumes a priori that bonds are covalent:

 φ1=1sA(1)1sB(2);   φ2=1sA(2)1sB(1)

 ΨVB=[2(1+S12)]-1/2[φ1 + φ2];  S12=<φ1|φ2> = SAB
2

Apply linear variation theory in usual way:
Dissociation to correct limit H + H
De~3.78 ev; cf., De(expt)~4.75 ev.

•

•
–

–
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So, the MO wavefunction gives the wrong limit
as H2 dissociates, whereas VB gives correct
limit. 
Both MO and VB give poor De

MO incorporates too much ionic character
VB completely ignores ionic character
Both are inflexible

How can these methods be improved?

•

•
•
•
•

•



IMPROVING VB AND MO
Could improve VB by adding ionic terms using

variational approach: 
 ΨVB,imp=ΨVB + γΨion = Ψcov + γΨion

where γ = variational parameter.
Expect γ~1 ~R=Re & γ ->0 as R-> ∞

Generalized valence bond (GVB) method: W.A. Goddard III

Since MO method over-emphasizes ionic
character, want to do something similar, but in
reverse

•

–

–
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•
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IMPROVING VB AND MO
Improve MO by allowing electrons to stay

away from each other: decrease importance of
ionic terms.  Recall (ignoring normalization)

 ΨMO=φ1(1)φ1(2):  φ1=1sA + 1sB

Antibonding orbital
 ΨMO

*=φ2(1)φ2(2):  φ2=1sA - 1sB

Keeps electrons away from each other.

•

–
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So, we write (ignoring normalization)
 ΨMO,imp= ΨMO + λΨMO

* =φ1(1)φ1(2) + λ φ2(1)φ2(2)

where λ = variational parameter
 |λ|∼0 at R = Re

     -> 1 as R-> ∞
Can easily show that

 ΨMO,imp= ΨVB,imp: γ = (1+λ)/(1−λ)

 ΨMO,imp is simplest MCSCF wavefunction
Gives smooth dissociation to H + H
Called TCSCF (two configuration SCF)

•
–
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H2 RHF VS. UHF
Recall that

 φ1=[2(1+S)]-1/2 (1sA + 1sB): bonding MO

 φ2=[2(1−S)]-1/2 (1sA - 1sB): anti-bonding MO

Ground state wavefunction is        

•
–

–

•

Ground state space function Φ = φ1(1)φ1(2)

RHF since α,β electrons restricted to same MO

–

–



Can introduce flexibility into the wavefunction
by relaxing RHF restriction.  

Define two new orbitals φ1
α,φ1

β, so that

 ΦUHF =  φ1
α(1) φ1

β(2): Unrestricted HF/UHF,
different orbitals for different spins: DODS

Can expand these 2 UHF orbitals in terms of 2
known linearly independent functions.  Take
these to be φ1, φ2:

 φ1
α =φ1cosθ + φ2sinθ        0≤θ≤45˚

 φ1
β = φ1cosθ - φ2sinθ        θ=0˚: RHF solution

•

–

–

•
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Can expand φ1α,φ1β in terms of 1sA, 1sB

Then derive <E(θ)>, d<E(θ)>/dθ, d2<E(θ)>/dθ2
 Details in Szabo & Ostlund; 2 possibilities:

•

•
–

Corresponds to Pople RHF/UHF stability test•



As H-H bond in H2 is stretched,
Optimal value of θ must become nonzero, since
We know RHF solution is incorrect at asymptote
As R->∞, θ-> 45˚
Can express UHF wavefunction as

•
–
–
–
–

Note that 1st 2 terms are just MCSCF wavefunction
3rd term corresponds to spin contamination

–
–



At θ=0˚, ΨUHF = ΨRHF =•

At θ=45˚,•
So, UHF wavefunction correctly dissociates to

H + H, but wavefunction is 50-50 mixture of
singlet and triplet
UHF therefore gives non-integer natural orbital

occupation numbers.
Simplest way of going beyond simple RHF

•

•



MCSCF ACTIVE SPACES

How many bonds (m) am I going to break?
How many electrons (n) are involved?
Active space is (n,m)

n electrons in m orbitals
Full CI within chosen active space: CASSCF/FORS

H2: 2 electrons in 2 orbitals
H2=CH2?

–
–
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SINGLET CH2
Consider simple Walsh diagram•

ε = orbital energy

In H2O, a1, b1 both doubly occ lone pairs: HF OK

b1 =pure p HOMO, a1 s character-> 0 as θ-> 180˚

At θ=180˚, (a1,b1) become degenerate π orbital

–

–

–



In CH2, a1=HOMO, b1=LUMO

At θ=90˚, N(a1)~2, N(b1)~0: HF OK

At θ=180˚, (a1,b1) = degenerate π orbital, so

–

–

–

There are 2 equally weighted configurations–



Most general form of 1CH2 wavefunction is•

This is a FORS or CASSCF wavefunction:
2 active electrons in 2 active orbitals: (2,2)
At θ~90˚: C1~1, C2~0: NOON~2,0

At θ=180˚: C1=C2=2-1/2: NOON~1,1

•
–
–

–



Now consider N2 dissociation:
Breaking 3 bonds: σ + 2π
Minimum correct FORS/CASSCF=(6,6)

6 electrons in 6 orbitals “active space”
N2 used as benchmark for new methods

designed for bond-breaking
Head-Gordon
Piecuch
Krylov

•
–
–
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MCSCF
Scales exponentially within active space

Full CI within active space: size consistent
Necessary for

Diradicals
Unsaturated transition metals
Excited states
Often transition states 

CASSCF accounts for near-degeneracies
Still need to correct for rest of electron

correlation: “dynamic correlation”

•
–
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MULTI-REFERENCE METHODS
Multi-reference CI: MRCI

CI from set of MCSCF configurations
SOCI in GAMESS
Most commonly stops at singles and doubles

MR(SD)CI: NOT size-consistent
Very demanding
~ impossible to go past 14 electrons in 14 orbitals

Multi-reference perturbation theory
(MBPT)

More efficient than MRCI
Not usually as accurate as MRCI
Size consistency depends on implementation

•
–
–
–

•
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