AN INTRODUCTION TO MCSCF: PART 2
ORBITAL APPROXIMATION

\[\Psi_{hp} = \psi_1(1)\psi_2(2)...\psi_N(N) \]

- Hartree product (hp) expressed as a product of spinorbitals \(\psi_i = \phi_i \sigma_i \)
- \(\phi_i \) = space orbital, \(\sigma_i \) = spin function \((\alpha, \beta)\)
- Pauli Principle requires antisymmetry:

\[\Psi = \hat{A}\Psi_{hp} = |\psi_1(1)\psi_2(2)...\psi_N(N)| \]

- Closed Shells:

\[\Psi' = |\phi_1\phi_1\phi_2\phi_2...\phi_N\phi_N| \]
• For more complex species (one or more open shells) antisymmetric wavefunction is generally expressed as a linear combination of Slater determinants.

• For example, consider simple excited state represented by excitation $\phi_i \rightarrow \phi_a$ out of closed shell:

$$\Psi = 2^{-1/2} [\phi_1 \phi_1 \phi_2 \phi_2 \cdots \phi_i \phi_a \cdots \phi_N \phi_N \mid \pm \mid \phi_1 \phi_1 \phi_2 \phi_2 \cdots \phi_i \phi_a \cdots \phi_N \phi_N \mid]$$
• For more complex open shell species (e.g., low-spin open shells with multiple partially filled orbitals, such as s\(^1\)d\(^7\) Fe) wavefunctions are linear combinations of several determinants.

• But, the coefficients on these determinants are determined by spin and symmetry, not by the Variational Principle.
HARTREE-FOCK METHOD

- Optimization of the orbitals (minimization of the energy with respect to all orbitals), based on the Variational Principle) leads to Hartree-Fock equations (closed shells):

\[\hat{F}\phi_i = \epsilon_i \phi_i \]

- For open shells, there are multiple Fock operators, one for each type of orbital occupancy; e.g. UHF: \(\hat{F}_\alpha, \hat{F}_\beta \)
LCAO METHOD

• Generally solve HF problem by LCAO expansion: expand ϕ_i as linear combination of basis functions (AOs), χ_μ:

$$\phi_i = \sum_\mu \chi_\mu C_{\mu i}$$

• The $C_{\mu i}$ are expansion coefficients obtained via the Variational Principle
 – $FC = SC_\varepsilon$
 – HFR matrix equation, *solved iteratively*
MCSCF METHOD

- Hartree-Fock (or DFT) is most common zeroth order wavefunction, but
- Many problems are not well represented by single configuration wavefunctions:
 - Diradicals (broadly defined)
 - Excited states
 - Transition states (frequently)
 - Unsaturated transition metals
 - High energy species
 - Generally, any system with near degeneracies
In such cases, the correct zeroth order wavefunction is MCSCF:

$$\Phi = \sum_k A_k \Psi_k$$

- Φ is the MCSCF wavefunction
- Ψ_k is a configuration wavefunction
 - Can be a single determinant
 - Could be a linear combination of determinants in order to be spin-correct
 - Generally called configuration state function (CSF), meaning spin-correct, symmetry-correct configuration wavefunction
Generally, two approaches to treating Φ in computer codes:

- Expand in terms of CSFs
 - Most commonly GUGA (graphical unitary group approach)
 - Made feasible by Shavitt, Schaefer
- Expand directly in terms of determinants
 - Can be faster code
 - More determinants to deal with
 - Each determinant not spin-correct, but easily dealt with
 - Not as robust: GUGA code is generally preferred
 - Some applications only available for determinant code

- Both available in GAMESS

$$\Phi = \sum_{x} A_{x} \Psi_{x}$$
\[\Phi = \sum_k A_k \Psi_k \]

- \(A_k \) are CI expansion coefficients
 - Determined variationally using linear variation theory

\[\langle E \rangle = \langle \Phi | \hat{H} | \Phi \rangle = \sum_{k,l} A_k A_l \langle \Psi_k | \hat{H} | \Psi_l \rangle \]

\[\partial \langle E \rangle / \partial A_k = 0, \ldots \]

\[HA = AE \]

- Solution of this (non-iterative) matrix eigenvalue equation yields
 - MCSCF energies \(E_M \) for each electronic state
 - CI coefficients \(A_{KM} \) corresponding to state \(M \)
Solution of MCSCF problem requires two sets of iterations to solve for two sets of coefficients

- For each set of CI coefficients A_K, solve for LCAO coefficients $C_{\mu i}$ (micro-iterations)
- For given set of $C_{\mu i}$, solve CI equations for new A_K
- Continue until self-consistency
MCSCF METHOD

- Most common implementation is FORS (fully optimized reaction space)/CASSCF (complete active space) SCF
 - Define active space in terms of orbitals and electrons
 - Perform full CI within active space
 - Very “chemical” approach
 - Can be computationally demanding
 - Ideal active space is full valence
 - Not always feasible; upper limit is \(\sim (16,16) \)
 - Sometimes tricky to choose active space
• Two sets of coefficient optimizations
 – CI coefficients optimized by solving linear variation secular equation
 – Orbital optimization analogous to, but more complex than, simple HF solutions
 • Need to optimize mixing between sets of subspaces: core, active, virtual
 – Core-active
 – Active-virtual
 – Core-virtual
 • Cf., HF high-spin open shell: Fock operators for
 – Doubly occupied-singly occupied
 – Doubly occupied-virtual
 – Singly occupied virtual
• Orbital optimizations
 – As for HF, each subspace invariant to internal mixing
 – Only mixing between subspaces will change energy
 – **Exception:** if MCSCF is not FORS/CASSCF (CI is not Full CI), must also optimize active-active mixing:
 • FORS simpler although more demanding computationally
 • Non-FORS less robust, more difficult to converge
 – Can think of optimization variables as rotation angles connecting orbitals in different subspaces (recall UHF)
• **Orbital optimizations**
 - **Taylor expansion of orbital gradient**
 • \(g(x) = E'(x) = g(x_0) + g'(x_0) \cdot (x-x_0) + \cdots \)
 • \(g' = E'' = \) orbital hessian - second derivative of energy wrt orbital rotations \(x \). So, at optimal \(E \)
 • \(E'(x) = 0 = E'(x_0) + E''(X_0) \cdot (x-x_0) \), ignoring higher order terms. Rearranging,
 • \(x = x_0 - E'(x_0)/E''(x_0) \): Newton-Raphson equation
 • In many dimensions, \(x \) is vector
 - **Completely analogous to geometry opt**
 - **Exact calc of orbital hessian (FULLNR=.T.)**
 • Takes much more AO to MO 4-label integral transformation time (need 2 virtual indices as in \([vo|vo]\), \(v = \) virtual, \(o = \) occupied
 • More memory required
As in geom opt, alternative to FULLNR is approximate updating of orbital hessian

- SOSCF=.T.: calc diagonal, guess off-diagonal
- Takes more iterations, but less time.
- Convergence less robust
- Easily can do 750 basis functions on workstation

Alternatives are

- JACOBI: simple pairwise rotations, similar to SCFDM
- FOCAS: uses only orbital gradients, not even diagonal hessian elements as in SOSCF. Each iteration is faster, but many more required

Best strategy

- Start with SOSCF
- Use FULLNR as backup
CHOOSING ACTIVE SPACES

• Full valence active space
 – Occupied orbitals are usually easy: choose all of them.
 – Virtual orbitals not always easy:
 • # of orbitals wanted = minimal valence basis set
 • # of available virtuals generally much larger
 • Virtuals are generally more diffuse and not easy to identify, especially with
 – Large basis sets, especially diffuse functions
 – Transition metals
 – High symmetry
• Strategies for full valence active space
 – MVOQ in SCF
 • Since virtual MOs are typically diffuse, ease of identification is improved if they are made more compact
 • $\text{MVOQ} = n$ removes n electrons from SCF calculation
 • Generates a cation with $+n$ charge - pulls orbitals in
 • Easier to find correct virtuals for active space
 • Improved convergence
• Strategies for full valence active space
 – Localized orbitals (LMOs)
 • Specify LOCAL=BOYS or RUDNBERG in $CONTRL
 • Transforms orbitals to bonds, lone pairs
 • Easier to understand occupied FV space
 • Can use these to construct virtual part of FV active space
 • Disadvantage: LMOs destroy symmetry, so the size of the problem (# of determinants) increases
 • Partial solution: symmetry localized orbitals can be specified using SYMLOC=.T. in $LOCAL
 – Localizes orbitals only within each irrep
 – Sometimes not localized enough
• Strategies for less than FV active space
 – Need to identify “chemically important” orbitals
 • Orbitals directly involved in the chemical process
 • Orbitals that may interact strongly with reacting orbitals
 – Examples
 • Recall H₂:
 – Active space includes H-H bonding orbital and H-H*
 – FORS(2,2): 2 electrons in 2 orbitals
 • Internal rotation in ethylene
 – Full Valence active space is (12,12)
 – Minimum active space includes only CC $\sigma,\pi,\pi^*,\sigma^*$: (4,4)
 – The two active spaces give ~same internal rotation barrier
 – This active space cannot account for other processes, such as C-H bond cleavage
More Examples

- **Internal rotation in H$_2$C=NH**
 - Start with analogous active space to ethylene: CN (4,4)
 - Recognize that N lone pair will interact with π system as internal rotation takes place
 - Add N lone pair to active space: (6,5), 6 electrons in 5 orbitals
 - Also correctly describes dissociation to H$_2$C + NH: NH fragment will be correctly described by $\sigma^2\pi_x^1\pi_y^1$

- **Dissociation of H$_2$C=O -> H$_2$C + O**
 - Again, start with CO (4,4)
 - Recognize O has two lone pairs, one 2s, one 2p
 - Recognize that 2s lone pair has low energy & likely inactive
 - Including 2p lone pair [(6,5) active space] ensures three 2p orbitals are treated equally in dissociated oxygen
 - Isomerization to HCOH requires additional (4,4) from CH/OH
Important to consider both reactant and product when choosing active space

- Ensures number of active electrons & orbitals are same
- Verifies reactant orbitals will be able to convert smoothly into product orbitals.
- Transition state orbitals can help make this transition smooth
- Consider isomerization of bicyclobutane to 1,3-butadiene

- Superficially only need to break two bonds: FORS(4,4)
- But, to treat all peripheral bonds equally, need all of them in active space: FORS(10,10)

- Now, consider isoelectronic NO dimer, N_2O_2
• Replace two bridge CH groups with nitrogens
• Replace two peripheral CH\(_2\) groups with oxygens
• Very high energy species: important HEDM compound
• First guess at good active space might be (10,10)
• *But*, one O lone pair on each O interacts strongly and must be included in active space for smooth PES
• Correct active space is (14,12)
• Pay attention to orbitals along reaction path!
MULTI-REFERENCE DYNAMIC CORRELATION

• Multi-reference CI: MRCI
 – CI from set of MCSCF configurations
 – Most commonly stops at singles and doubles
 • MR(SD)CI: Very demanding
 • ~ very difficult to go past 16 electrons in 16 orbitals

• Multi-reference perturbation theory
 – Several flavors: CASPT2, MRMP2, GVVPT2
 – Mostly second order (except CASPT3)
 – More efficient than MRCI
 – Not usually as accurate as MRCI
 – Can “blow up” if perturbation is too big
MULTI-REFERENCE DYNAMIC CORRELATION

- MRCI, MRPT generally not size-consistent
 - +Q correction can make MRCI nearly size consistent
 - MRPT developers like to say the method is “nearly size-consistent”
 Not really true
 - Cf., GN methods are “slightly empirical”
STRATEGIES FOR INCONSISTENT ACTIVE SPACES

• Sometimes different parts of PES require different active spaces. Strategies
 – Optimize geometries, obtain frequencies with separate active spaces
 – Final MRPT or MRCI with composite active space
 – If composite active space is too large
 • Optimize geometries with separate active spaces
 • Use MRPT with separate active spaces to correlate all electrons
Complex wavefunctions like MCSCF are very useful, but qualitative interpretations are important.

Two useful tools are:
- Natural orbitals
- Localized orbitals

Natural orbitals introduced by Löwdin in 1955:
- Diagonalize the 1st order density matrix ρ
- Simply the HF orbitals for HF theory
NATURAL ORBITAL ANALYSIS

- For fully variational methods (HF, MCSCF), 1st order density matrix is simply obtained from $\Psi\Psi^*$

- For other methods (MPn, CC, MRMP), must also calculate non-Hellmann-Feynman contribution: requires gradient of energy

- Eigenvectors of 1st order density matrix are natural orbitals

- Eigenvalues are natural orbital occupation numbers (NOON): λ_i
For RHF & ROHF, NOON are integers: 2, 1, 0

For other methods, NOON are not integers

• Deviation from 2 (occupied orbitals) or 0 (virtual orbitals) indicate importance of configurational mixing
 • For H$_2$, $\lambda_1 \sim 2$, $\lambda_2 \sim 0$ near R_e; $\lambda_1, \lambda_2 \sim 1$ near dissociation

NOON are also good diagnostic for need for MCSCF zeroth order wavefunction

• NOON for single reference assume non-physical values when such methods start to break down.

Examples
Table 2. Natural orbital occupation numbers for the 1A_1 state of CH$_2$ as a function of bond angle, the aug-cc-pVTZ/MBPT2 optimized bond length was used for all calculations. The optimum aug-cc-pVTZ/MBPT2 bond angle is 102.1 degrees.

<table>
<thead>
<tr>
<th>Angle</th>
<th>Method</th>
<th>Principal Lone Pair NOON</th>
<th>non-Physical NOON</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.0</td>
<td>MRCI</td>
<td>1.896 0.077</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.891 0.088</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.912 0.085</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.901 0.071</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.961 0.015</td>
<td>-0.00003, 2.00001</td>
</tr>
<tr>
<td>102.1</td>
<td>MRCI</td>
<td>1.887 0.086</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.885 0.094</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.906 0.092</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.894 0.077</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.962 0.014</td>
<td>-0.00002, 2.00001</td>
</tr>
<tr>
<td>120.0</td>
<td>MRCI</td>
<td>1.862 0.112</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.871 0.107</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.894 0.105</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.876 0.095</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.961 0.015</td>
<td>-0.00003, 2.00000</td>
</tr>
<tr>
<td>150.0</td>
<td>MRCI</td>
<td>1.668 0.303</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.771 0.203</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.797 0.201</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.772 0.196</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.961 0.016</td>
<td>-0.00003, 2.00000</td>
</tr>
<tr>
<td>170.0</td>
<td>MRCI</td>
<td>1.104 0.865</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.133 0.833</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.154 0.846</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.612 0.254</td>
<td>-0.00001</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.960 0.016</td>
<td>-0.00003, 2.00000</td>
</tr>
<tr>
<td>180.0</td>
<td>MRCI</td>
<td>0.984 0.984</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>0.982 0.982</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CASSCF</td>
<td>1.000 1.000</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.572 0.394</td>
<td>-0.00001</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.960 0.016</td>
<td>-0.00003, 2.00000</td>
</tr>
<tr>
<td>R (Å)</td>
<td>Method</td>
<td>Natural Orbital Occupation Numbers</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>σ</td>
<td>π</td>
</tr>
<tr>
<td>1.078</td>
<td>MCSCF</td>
<td>1.983</td>
<td>1.945</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.964</td>
<td>1.924</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.966</td>
<td>1.924</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.963</td>
<td>1.930</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.956</td>
<td>1.922</td>
</tr>
<tr>
<td>1.2</td>
<td>MCSCF</td>
<td>1.974</td>
<td>1.921</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.955</td>
<td>1.899</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.956</td>
<td>1.900</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.952</td>
<td>1.907</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.951</td>
<td>1.898</td>
</tr>
<tr>
<td>1.4</td>
<td>MCSCF</td>
<td>1.951</td>
<td>1.862</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.932</td>
<td>1.837</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.931</td>
<td>1.840</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.918</td>
<td>1.847</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.929</td>
<td>1.841</td>
</tr>
<tr>
<td>1.6</td>
<td>MCSCF</td>
<td>1.911</td>
<td>1.755</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.892</td>
<td>1.730</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.887</td>
<td>1.732</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.857</td>
<td>1.749</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.895</td>
<td>1.735</td>
</tr>
<tr>
<td>1.8</td>
<td>MCSCF</td>
<td>1.825</td>
<td>1.558</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.817</td>
<td>1.545</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.800</td>
<td>1.536</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.761</td>
<td>1.601</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.826</td>
<td>1.486</td>
</tr>
<tr>
<td>2.0</td>
<td>MCSCF</td>
<td>1.663</td>
<td>1.325</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.675</td>
<td>1.329</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.640</td>
<td>1.308</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.623</td>
<td>1.394</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.563</td>
<td>1.174</td>
</tr>
<tr>
<td>2.2</td>
<td>MCSCF</td>
<td>1.480</td>
<td>1.176</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.502</td>
<td>1.182</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.463</td>
<td>1.165</td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>1.442</td>
<td>1.128</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>1.417</td>
<td>2.658</td>
</tr>
<tr>
<td>2.4</td>
<td>MCSCF</td>
<td>1.339</td>
<td>1.101</td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td>1.359</td>
<td>1.104</td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td>1.326</td>
<td>1.094</td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>NONCONVERGENT</td>
<td></td>
</tr>
<tr>
<td>R (Å)</td>
<td>Method</td>
<td>Non-Physical NOON¹</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>1.078</td>
<td>MCSCF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>2.00001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>2.00001(2)</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>MCSCF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>2.00001(2), -0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>2.00001(2)</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>MCSCF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>2.00001(2), -0.0003, -0.0076(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>2.00002, 2.00001</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>MCSCF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>2.00002(2), -0.0018, -0.0066(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>2.00002, 2.00001</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>MCSCF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>2.00002(2), -0.00124, -0.01806(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>2.00002, 2.00001</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>MCSCF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>2.00027, 2.00002, -0.00756, -0.03766</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCSD(T)</td>
<td>2.00001(2), -0.00005(2), -0.00004(2)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>MCSCF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRCI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CASPT2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MBPT2</td>
<td>2.02379, 2.00002, -0.02571, -0.07125</td>
<td></td>
</tr>
</tbody>
</table>
MCSCF/LMO/CI METHOD

 – Choose active space for particular bond type
 – Determine MCSCF LMOs within active space
 • These are atom-like in nature
 – Perform CI within LMO MCSCF space
 – Applied to analyze TM-MG double bonds
 • TM = transition metal (or Tom)
 • MG = main group (or Mark Gordon)
• Possible resonance contributors

- Straight line = covalent structure, electrons shared
- Arrow = ionic structure, both electrons on atom at base of arrow
- Lower arrow = σ, upper arrow = π
Table 1. Percent contributors of covalent and ionic resonance structures in $\text{H}_2\text{M}=\text{EH}_2$ compounds. Nucleophilic structures are defined as those with M^+E^- ionicity, electrophilic means M^-E^+.

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>Zr</th>
<th>Nb</th>
<th>Ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>44.6</td>
<td>40.0</td>
<td>41.5</td>
<td>39.7</td>
</tr>
<tr>
<td>C</td>
<td>36.5</td>
<td>32.8</td>
<td>37.4</td>
<td>34.1</td>
</tr>
<tr>
<td>A</td>
<td>3.8</td>
<td>4.7</td>
<td>7.6</td>
<td>6.5</td>
</tr>
<tr>
<td>B</td>
<td>2.6</td>
<td>2.9</td>
<td>4.5</td>
<td>3.9</td>
</tr>
<tr>
<td>C</td>
<td>1.9</td>
<td>5.5</td>
<td>4.8</td>
<td>6.3</td>
</tr>
<tr>
<td>D</td>
<td>9.7</td>
<td>14.1</td>
<td>11.7</td>
<td>13.4</td>
</tr>
<tr>
<td>E</td>
<td>34.6</td>
<td>31.5</td>
<td>24.1</td>
<td>26.5</td>
</tr>
<tr>
<td>F</td>
<td>36.2</td>
<td>30.9</td>
<td>26.3</td>
<td>28.2</td>
</tr>
<tr>
<td>G</td>
<td>8.2</td>
<td>8.6</td>
<td>13.2</td>
<td>11.0</td>
</tr>
<tr>
<td>H</td>
<td>7.3</td>
<td>6.8</td>
<td>8.1</td>
<td>7.6</td>
</tr>
<tr>
<td>I</td>
<td>0.3</td>
<td>1.6</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>E</td>
<td>2.6</td>
<td>6.3</td>
<td>3.7</td>
<td>5.5</td>
</tr>
<tr>
<td>G</td>
<td>5.4</td>
<td>3.1</td>
<td>5.3</td>
<td>3.7</td>
</tr>
<tr>
<td>H</td>
<td>2.6</td>
<td>5.7</td>
<td>4.4</td>
<td>3.7</td>
</tr>
<tr>
<td>I</td>
<td>0.2</td>
<td>0.4</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Neut.</td>
<td>53.6</td>
<td>50.6</td>
<td>56.0</td>
<td>53.0</td>
</tr>
<tr>
<td>Nucl.</td>
<td>36.8</td>
<td>38.6</td>
<td>29.8</td>
<td>35.3</td>
</tr>
<tr>
<td>Elec.</td>
<td>9.4</td>
<td>10.8</td>
<td>13.4</td>
<td>12.5</td>
</tr>
</tbody>
</table>

This method 1st to show σ ylide structure D is an important resonance contributor
STEPS TO RUN CASSCF

• RUN HF TO GET STARTING ORBITALS
 – Grab vec group from .dat & insert in input file
• Set up MCSCF input file
$$CONTRL \textbf{SCFTYP}=\textbf{MCSCF} \ \textbf{RUNTYP}=\textbf{ENERGY} \ \textbf{MULT}=1 \ \$END$$

$$BASIS \ \textbf{GBASIS}=\textbf{N31} \ \textbf{NGAUSS}=6 \ \textbf{NDFUNC}=1 \ \$END$$

$$GUESS \ \textbf{GUESS}=\textbf{MOREAD} \ \textbf{NORB}=4 \ \$END$$

$DATA$

RHF/6-31G(d) H2

DNH 2

HYDROGEN 1.0 .0000000000 .0000000000 .3650000000

END

RHF/6-31G(d) H2

E(RHF)= -1.1268278242, E(NUC)= 0.7249003414, 7 ITERS

VEC

1 1 3.28562555E-01 2.69295789E-01 3.28562555E-01 2.69295789E-01
2 1 1.20677971E-01 1.74055284E+00-1.20677971E-01-1.74055284E+00
3 1 7.61861020E-01-6.85623406E-01 7.61861020E-01-6.85623406E-01
4 1-1.13103226E+00 1.35731210E+00 1.13103226E+00-1.35731210E+00

END

$DRT \ \textbf{NMCC}=0 \ \textbf{NDOC}=1 \ \textbf{NVAL}=1 \ \textbf{FORS}=\textbf{.T.} \ \textbf{GROUP}=\textbf{D2H} \ \END

$MCSCF \ \textbf{CISTEP}=\textbf{GUGA} \ \textbf{FORS}=\textbf{.T.} \ \END
H$_2$ LOG FILE
$CONTRL SCFTYP=MCSCF RUNTPY=ENERGY NZVAR=3 COORD=ZMT $END
$SYSTEM TIMLIM=5 MEMORY=300000 $END
$BASIS GBASIS=STO NGAUSS=3 $END
$DATA
 Methylene...1-A-1 state...MCSCF/STO-3G
 Cnv 2

 C
 H 1 rCH
 H 1 rCH 2 aHOH

 rCH=1.09
 aHOH=130.0
$END
$GUESS GUESS=MOREAD NORB=7 $END
$MCSCF CISTEP=GUGA $END
$DRT NMCC=3 NDOC=1 NVAL=1 FORS=.T. GROUP=C2V $END
 Methylene...1-A-1 state...MCSCF/STO-2G
 E(RHF)=-38.3704886597, E(NUC)= 6.1450312399, 8 ITERS
$VEC
1 1 9.93050334E-01 3.06416919E-02 0.00000000E+00 0.00000000E+00 7.13949414E-03
1 2-7.56284556E-03-7.56284556E-03
2 1-2.13664212E-01 6.49200772E-01 0.00000000E+00 0.00000000E+00 1.82338446E-01
2 2 2.71289288E-01 2.71289288E-01
3 1 0.00000000E+00 0.00000000E+00 5.42052798E-01 0.00000000E+00 0.00000000E+00
3 2-4.66619722E-01 4.66619722E-01
4 1 1.43219334E-01-6.53818237E-01 0.00000000E+00 0.00000000E+00 7.44709913E-01
4 2 2.24175347E-01 2.24175347E-01
5 1 0.00000000E+00 0.00000000E+00 0.00000000E+00 1.00000000E+00 0.00000000E+00
5 2 0.00000000E+00 0.00000000E+00
6 1 0.00000000E+00 0.00000000E+00 1.08196576E+00 0.00000000E+00 0.00000000E+00
6 2 8.37855220E-01-8.37855220E-01
7 1-1.69243066E-01 1.08779602E+00 0.00000000E+00 0.00000000E+00 8.71412547E-01
7 2-9.04841898E-01-9.04841898E-01
$END
EXAM06.
 1-A-1 CH2 MCSCF methylene geometry optimization.

At the initial geometry:
The initial energy is -37.187342653,
the FINAL E= -37.2562020559 after 14 iterations,
the RMS gradient is 0.0256396.

After 4 steps,
FINAL E= -37.2581791686, RMS gradient=0.0000013,
r(CH)=1.1243359, ang(HCH)=98.8171674

$CONTRL SCFTYP=MCSCF RUNTYP=OPTIMIZE NZVAR=3 COORD=ZMT
$END
$SYSTEM TIMLIM=5 MEMORY=300000 $END
$BASIS GBASIS=STO NGAUSS=2 $END
$DATA
 Methylene...1-A-1 state...MCSCF/STO-2G
 Cnv 2

 C
 H 1 rCH
 H 1 rCH 2 aHOH

 rCH=1.09
 aHOH=99.0
$END
$ZMAT ZMAT(1)=1,1,2, 1,1,3, 2,2,1,3 $END

Normally one starts a MCSCF run with converged SCF orbitals
$GUESS GUESS=HUCKEL $END

two active electrons in two active orbitals.
must find at least two roots since ground state is 3-B-1

$DET NCORE=3 NACT=2 NELS=2 NSTATE=2 $END
“ALTERNATIVES” TO MCSCF

• SINGLE REFERENCE METHODS
 – Spin-Flip: Anna Krylov
 – Completely renormalized CCSD(T): Piecuch
 • Adds a denominator to CCSD(T) that permits correct single bond breaking
 • Potentially huge impact: Treats diradicals correctly
 • Open or closed shells
 • CCTYP=CR-CCL in GAMESS
RECENT DEVELOPMENTS

- ORMAS (Joe Ivanic)
 - Occupation restricted multiple active spaces
 - Method for expanding size of MCSCF
 - Identify several smaller subspaces
 - Also ORMAS-PT2

- Eliminating deadwood from MCSCF, CI
 - Ruedenberg, Ivanic, Bytautas
 - Extrapolate to complete basis set
 - Interpolate to exact Full CI
 - Allows full CI on much larger systems

- Parallel MCSCF, CI